Herd Research

Olivia Wilburn
January 28, 2021

Abstract

Numerical modeling of herding and flocking behavior of animals can lead to greater
understanding of these patterns, which can have important impacts on a number
of other fields such as the physics of self-assembling systems, vehicular traffic, and
robotics. The simulating of modeling and understanding flock behavior is an essential
aspect of understanding the complexity of life, and can model other phenomena. The
simulation code created for this project calculates individual behavior based on a set of
psychological forces that exhibits the emergent behavior of group-herding patterns. An
added force of a predator is explored that can be created with distance and direction
of acceleration. The analysis shown here explores previous studies of flocking behavior
and presents insights into a personal study as well as further uses and other studies
and their contributions to this topic.

1 Introduction

To create an accurate representing of herd
animals and how they operate we needed an
understanding of the way they act and those
causes. We decided to categorize each deci-
sion/mentality as a force in order to represent
these decisions precisely using math. Using
Boid’s Algorithm, and consulting scholarly
articles on herd animal movements, we cre-
ated four main forces. The four forces we de-
cided would represent the animals behaviour
the best were center seeking, velocity match-
ing, collision avoidance, and a maximum ve-
locity limit. An additional force representing
the avoidance of predators will be explored
conceptually at the end of this paper.

This type of simulation is helpful for the
modeling of herd behavior, but for other
types of analysis as well. The simulating of
multiple individual data points can be use-
ful for much broader contexts, such as traf-
fic, clouds, and other groups of particle-like
points. Being able to simulate herds specifi-
cally is important for the use of herd research
as well as the possibility of adapting the code
to fit other uses. Boid’s algorithm, created
in Flocks, Herds, and Schools: A Distributed
Behavioral Model[1] specifically, helped a lot
in the creation of this research as a point of
inspiration and direction. Although it’s not
possible to add the full animation in this re-
port, the image sequences are displayed giv-
ing an accurate representation of the changes
in data.

The fundamentals behind clustering and,
specifically, Boid’s Algorithm has influenced
a plethora of other studies and scholarly
works. In recent years, the amount of in-
ternet data and information has skyrocketed.
To combat this overload of information, web
recommendation has become more popular,
which recommends certain pages formed from
previous searches and browsing history [2].
Clustering helps divide and sort information

about browsing behavior, and Boid’s Algo-
rithm helps separate this. The clustering
is very mixed, as the each individual data
point is considered a Boid. To group these
Boid’s, two parameters are used: affinity and
centroid based calculation. The affinity cal-
culation concentrates on similarities between
two boid’s at a time, and is higher the more
amount of similar objects. The centroid and
merging rule defines every boid as a centroid,
and then applies a merging process. To merge
multiple boid’s into one centroid they must
be near each other and within the the sight
area of one another. Then, the probability,
Pmxy, of the two groups x and y become one
centroid [2].This probability is also propor-
tional to the affinity of the two boid’s. In
the case that a boid doesn’t belong well to a
group, they may leave to look for a group with
more similarities. These two parameters and
their formulas give the object represented,
the centroid, and the centroid with the great-
est affinity. The three rules these centroid
obey are parallel to the idea of Boid’s Algo-
rithm—separation, alignment, and cohesion.
This all comes together to sort web recom-
mendations, helping group the huge amount
of information present on the internet today.
Although, web browsing does not initially
seem similar to flocking birds, Boid’s Algo-
rithm is very important in this field to con-
tinue to tackle the surplus of data.

Robots and automated machines are an-
other form of technology that rely on algo-
rithm’s to run. Kasper Stgy from the Univer-
sity of Southern Dakota published a paper de-
scribing communication forms in multi-robot
systems, and the importance of choosing a
form that doesn’t separate the meaning of
messages from the physical environment [3]
In discussing a way to simplify path plan-
ning, the use of Boid’s Algorithm was plau-
sible. The task of making a robot team stay
together is similar to that of a herd, with the
need to not bump into one another and stay

uniformed. Boid’s Algorithm provides a sim-
ple way to mimic the behavior needed—which
in simulation is produced well. However,
through this study it was shown that this al-
gorithm doesn’t transfer to robots easily. The
sensors on the robots are hard to map, for
the speed and distance of others, as well as
the precision of these variables [3]. Although
Boid’s Algorithm doesn’t work well for these
multi-robot systems, it produces the possibil-
ity of the involvement of Boid’s Algorithm in
future robotics and other ways to solve these
complex problems.

While Boid’s Algorithm has been used
in numerous ways as itself, as seen in the
robotics field and web information, different
variables and situations have been added to
the original algorithm to make it more spe-
cific. In one instance, a herd of animals with
artificial fear was created using Boid’s Algo-
rithm. Deer were created as a group of flock-
ing animals, then and autonomous agent was
incorporated to simulate fear. This study en-
hanced the world of virtual environments by
including the reaction of behaviors [4]. An-
other project directed Boid’s Algorithm in a
different direction. In the study Autonomous
Boids[5] an additional force is added defined
as the change of leadership. This creates
the chance for a bird to steer away from the
group and escape. Boids on the outside of
the group have a higher chance of escaping,
although it’s not a guarantee [5]. These types
of changes to Boid’s Algorithm show a few of
the many possibilities that research can be
expanded from this code.

In the following section the Selfish-Herd
Theory is explained, and it’s role in natural
her behavior. Boid’s Algorithm is then dis-
cussed in-depth, and compared to the herd
research. We then explain the methods used
to create the code for the herd research com-
pleted and a description of the forces. The
results of the code are then discussed with
images to further explain. The full code is

shown present in the appendix, showing the
forces used used to simulate herd behavior.

2 Method

2.1 Selfish Herd Theory

The center seeking force, Force 1, was the
first to be calculated for the data. The force
pulls the data into the center of the group,
by calculating the sum of all the data points
location and averaging it to find the mean
and average center of the herd. This is illus-
trated by the 'flowing’ movement of the data
as each point has their own velocity that is
continuously being calculated to find the new
center. As the group of data (herd) moves
around each animal is at all times trying to
be in the middle of the pack, causing the
herd to mimick a pulse from a distance. This
demonstrates the want for the animal to be
in the center of the pack/herd, which is called
Selfish Herd Theory. Selfish herd theory was
developed to explain this want that animals
posses to be in the middle that seems to be
hardwired into their brain and that ”...there
are spatial benefits to individuals in a large
group, since individuals can alter their spatial
position relative to their group-mates and any
potential predator, thus reducing their preda-
tion risk.” [6]

2.2 Boid’s Algorithm

In Reynold’s book ”"Flocks, Herds, and
Schools: A Distributed Behavioral Model 17
published in 1987, where he explains his ap-
proach to simulate flocking. ”Omne area of
interest within computer animation is the
description and control of all types of mo-
tion...It is not impossible to script flock mo-
tion, but a better approach is needed...” [1]
Craig explains. This was his inspiration for
the code, as motion was a very difficult task

to perfect. Computer animators were hav-
ing a very hard time trying to simulate the
complex world of flock of birds. Each bird
makes it’s own decision, and no two motions
birds are exactly the same. However, when
in a flock, they’re very synchronized. To ani-
mate the decisions for each bird while simul-
taneously having them aligned is not an easy
feat. Reynolds created a way to simulate bird
flocking as ”...the result of the interaction be-
tween the behaviors of individual birds.”[1]
by simulating the behavior of each bird and
from their perception.

Reynolds wasn’t the first to create a sim-
ulation of flocks of birds, the Electronic The-
ater at SIGGRAPH 85 created a code infor-
mally known as the ’Force Field Animation
System’ which relied on a matrix operator
that transformed from a point in space to an
acceleration vector, that the birds would then
follow linearly. Karl Sims from MIT created
a different animation of moving objects, but
neither group produced something as ”...or-
ganized as flocks.” [1]. The Boid Flock Model
that Reynolds created, he describes as a slight
generalization of particle systems. These par-
ticles systems have modeled other systems
that similarly have individual particles that
make up systems that behave alike—clouds,
ocean spray, fire, etc. Although the Boid Al-
gorithm 1is slightly different, it’s concept is
very similar and those other projects offered
inspiration. To simulate the flock, the three
behaviors were created: Collision Avoidance,
Velocity Matching, and Flock Centering. Ex-
tra research on geometric flight was also nec-
essary to simulate the use of an X,Y, and Z,
axis, as a bird flying is able to bank turns
and has centrifugal force depending on the
angle of the bank. The figure shown below
describes part of the force considered when
Reynolds researched geometric flight.[1]

Direction of Fiight
—e

Gilobal X

Wl

Global 2 '\
* y
b

Gravity ~~"~

Forces of Geometric Flight [1]

This flocking model doesn’t represent real
senses, such as vision and hearing, from an-
imals (or incorporate them into the simula-
tion), but rather approximates the behavior
that would occur. Each of the three behav-
iors acts as an acceleration request of a three-
dimensional vector, which each has it’s own
parameters. When the code is run, all of
the different accelerations and runs through
them, while sometimes potentially conflict-
ing, which then produces the final decision
of the bird. Through most scenarios this
worked, the accelerations would sometimes
‘cancel out’ and the product would result
in a slight change of direction. However,
in specific scenarios, like avoiding a collision
with an object, the averaging of acceleration’s
wouldn’t account for this necessary change,
resulting in a collision. To combat this, pri-
oritized acceleration was developed. This or-
ders the behaviors in a list, accommodat-
ing for an emergency situation. In this sit-
uation, instead of all accelerations averaging
out, the most important would take control,
leaving the others less ’strength’ to override
it. These edits helped create one of the first
successful codes for flocking behavior that
was able to maneuver objects successfully and
fluidly, truly representing a group of particle-
like points that moved synchronously enough
to change direction as one.

2.3 Personal Research

For our personal research in this field, we
decided to undertake creating a herd theory.
The goal was to create a number of forces
that all herd animals experience, affecting
their movement and choices when moving in
a herd. Some of these forces overlapped with
the concept of Boid’s algorithm, but not all
of them, as birds behave slightly differently
than herd animals on land.

Force 1 was described earlier, as the cen-
ter seeking force. This was created in mind
of the Selfish Herd Theory. The Selfish Herd
Theory is a consistent action performed by
herd animals, centering themselves in a herd.
Herd animals feel safer in the middle of the
herd, and are always trying to get to that
middle spot. To represent this in the code,
the force calculated the average position for
all the data and found the average center
through this. Then as the data would move it
would not only have it’s regular velocity, but
to seek the average location for the group.

Force 2 accounted for velocity matching.
While every data point had it’s own spa-
tial location and velocity, as a herd mov-
ing together, the velocities needed to be
matched. This is a common force for any an-
imal whether it be flocking, herding, or hunt-
ing. In order to be affective as a group, the
group needs to stay close with similar param-
eters.

Force 3 represents collision avoidance in
this program. Collision avoidance has been
studied to be the ability, and want, to avoid
each other physically. The collision avoid-
ance force numerically changes depending on
the animal. For example, cows knowingly
bump into each other a lot—never completely
through one another-but are able to slightly
collide, while other animals are less likely to
do this, and have a higher radius of personal
space.[7] This force shows the ability to syn-

chronously move together, without full over-
lap of an exact spatial location.

Force 4 sets a maximum velocity limit.
Compared to the previous forces it doesn’t
affect the look of the herd when moving, but
rather prevents chaos from the data going too
fast. Biologically speaking, there is a maxi-
mum velocity any animal can reach. By set-
ting the limit, it limited the data from being
infinitely fast which we know to be impossible
in the animal kingdom.

To represent these forces, we chose
Python because of it’s ability to function as
a high-level programing language that sup-
ports modules and packages (that were both
needed to create this simulation). Using mod-
ules and packages allowed for extra functions
to be added to create the best working pro-
gram. For this research extra packages were
needed for the math and graphics both in-
volved.

To create the borders of the image se-
quence we also needed to set parameters to
‘corral’ the data points in. These were set
to reflect the data points in order to create
an ongoing loop of movement. Without the
reflect order once the data moved out of the
borders set the simulation would end.

There were several complications running
the code once it was developed. Python is
a high-level programming language and was
able to create the code with the right imports,
however it’s not made to run advanced ani-
mation. To combat this problem multiple ap-
proaches were taken. Multiple packages were
downloaded to try and allow ImageSequence-
Clip to compile produced images together.
When running the program, it would run it-
self for a set amount of times, each time pro-
ducing a new image slightly altered from be-
fore. When these images were compiled in a
fast sequence, it produced a short animation,
similar to a flip-book style. Unfortunately,
this ImageSequenceClip function didn’t work

on all forms of MAC OS and was unable to
run multiple times. To combat this we tried
a number of other programs meant to com-
pile images. Eventually, we found an a pro-
gram online that was able to take the images
produced and run them to create the visual’s
shown in this report.

3 Results

The images below were taken at intervals
of 3 seconds apart, with the average image be-
ing 10 images apart from the previous. This
shows the change in animation over time, as
the group imitates pulse-like behavior while
simultaneously moving as a group. Although
it’s difficult to illustrate the motion across the
axis’, it is clear to see the movement inside

the herd.

3.1 Herd Simulation Images

3.2

Time 0:00 (s)

3.3

Time 0:09 (s)

3.4

Time 0:21 (s)

4 Conclusion

The final code produced shows a cluster-
ing behavior that is similar to observed herd
behavior. Center seeking, velocity matching,
collision avoidance, and a maximum veloc-
ity parameter were all needed to represent
their behaviors, and did model these specific
forces. With the understanding and analysis
of Boid’s Algorithm, we were able to use that
knowledge to help build the new code and ap-
ply certain ideas from it. Although Boid’s Al-
gorithm is applied to flocking behavior, there
exists few differences. The addition of three-
dimensional vectors and an x,y,z for spatial
locations when addressing birds being one of
them, as they have the ability to cross into all
three axis. Herding animals do not have this
ability, however, they share similar behav-
ioral traits in two-dimensions. The current
code has a very similar model to the Boid’s
Algorithm model. With further work and an
addition of a fifth force, a predator, this could
tackle the idea that Boid’s Algorithm doesn’t
represent vision. With a 'knowledge’ of the
predator force and a reactionary action, this
would elevate the research into representing
more behavioral components and further sim-
ulating herd animals. Similarly, the same new
force could be applied to flocking in a three-
dimensional way to extend the programs rep-
resentation. With more research done, this
code can continue to be manipulated and im-
proved.

When compiled, the images produced

from this code do a good job of simulating
herd behavior with all four components com-
bined. It is difficult to differentiate between
each data point in the still images, but when
compiled it is easy to see Force 1 taking ef-
fect, as the dots take turns pushing to the
middle. Force 2, velocity matching is shown
as the dots continue group, as none of them
are outliers. Velocity matching makes sure
the dots are going the same speed and di-
rection—because they have different starting
positions they vary slightly in spatial loca-
tion—but remain as one group when they
move across the axis. Collision avoidance,
Force 3, is partially acknowledged in these
images. Some of the data points overlap,
which would represent cows or other animals
bumping into each other as their flight dis-
tance is minimal. This force would need to
be altered if the animal represented was more
skittish (for example, a deer) so the overlap
wouldn’t happen at all. Although overlap can
be seen, there is no one-point that is in the ex-
act same location as another—modeling the
boundaries of an animal. Force 4, the limit of
acceleration can’t be demonstrated through
the still images, but is represented in the com-
pilation of the images, as they slowly move.

To improve this code and it’s ability to
simulate herds, in the future we hope to add
a fifth force that represents a predator (Force
5). This Force 5 contains three main compo-
nents. Adding this Force 5 would also rein-
force the Selfish Herd Theory. Animals natu-
rally try and center themselves in the middle
of the herd, as it’s the farthest away from any
danger. When a predator does put the herd
in danger, this theory is just as strong, as
the threat of danger is higher, every animal
wants the highest chance of survival. Since
this stays the same, there is no extra code
needed, but an understanding of why the herd
continues to follow Force 1.

The first objective, would be the increase
in flight zone distance, an animals ‘personal

space’. The more scared the animal is, the
more the flight distance increases. If the
predator is a bigger threat, the distance also
increases. To illustrate this through Python,
the collision avoidance, Force 2, needs to
change, depending on the choice of animal
and predator. When they’re scared, this
distance continues to increasing varying on
the degree of anxiety. To represent a bigger
threat, with a separate data point, the colli-
sion avoidance needs to increase significantly
when this point closed in on the herd. If the
predator was less of a threat Force 2 would
still increase, but slightly less.

Secondly, to more accurately incorporate
this predator we need to change the direc-
tion of the animals depending on the direc-
tion of the predator. This illustrates a re-
action between noticing a predator and go-
ing the other way. Herds react in two types
of ways when confronted by a predator. If
the predator comes from behind them or the
side, they tend to go directly opposite, lin-
early, away. However, if the predator faces
the herd head-on, it is normal for the herd to
split, running away from where the predator
is at a 45 degree angle. This angle is created
from the forward velocity the animals already
have, and their instinct to run directly to the
side when confronted, adding the two vectors
results in the 45 degree angle that is seen so
much in the wild.

Lastly, we would need to increase the ac-
celeration function to increase dependent on
distance from the predator. The function
would still need a maximum limit, to ensure
the animals can’t run infinitely fast, but the
predator data point gets closer the acceler-
ation would increase and vice versa. With
these three components, an accurate repre-
sentation of a predator would be added to the
simulation of actions of natural herd, better-
ing this code for all future needs.

Outside of bettering the code to improve
it, modeling individual data points in groups

like this research has lots of possible future
applications as well. Certain scientists work
with herd animals, and having a program
that can simulate these animals and their be-
havior can be greatly beneficial. Outside of
the world of herding animals, the basics of
this code can be greatly applicable to a lot of
situations. Modeling individual data points
that act as a group can be rewritten with dif-
ferent ’behaviors’ to represent a plethora of
other situations. Traffic is another situation
where each data point makes it’s own deci-

sion, but as a whole every vehicle tends to
follow a certain set of rules. Although this re-
search is specifically for herding animals, herd
behavior is common throughout the world in
every day situations. Being able to model
these accurately can not only help further re-
search but further the understanding of the
way the world works. Accuracy presents an-
other question for further research—to pursue
the unit of measurement research can be com-
pared to natural phenomena.

5 Acknowledgements

I'd like to thank Dr. Eric Edlund for collaborating with me on this project. Without him
this research would not have been possible. Also, without the previous research creating
Boid’s Algorithm this would’ve been a much more difficult project.

6 References

[1] Reynolds, C. W. ”Flocks, Herds, and Schools: A Distributed Behavioral Model.” Computer
Graphics, 21(4), July 1987, pp. 25-34.

[2] Suguna, R., Sharmila, D., ” An Efficient Web Recommendation System using
Collaborative Filtering and Pattern Discovery Algorithms,” International Journal of
Computer Applications (0975 — 8887), Volume 70— No.3, May 2013

[3] Stay, K., ” Using Situated Communication in Distributed Autonomous Mobile Robotics,”
The Maersk Mc-Kinney Moller Institute for Production Technology, University of
Southern Denmark, Odense, Campusvej 55 DK-5230 Odense M Denmark

[4] Delgado M. C., Ibanez J., Bee S., et al. (2007), “On the use of Virtual Animals with
Artificial Fear in Virtual Environments”, New Generation Computing 25 (2): 145- 169.

[5] Hartman C., Benes B. (2006), “Autonomous boids”, Computer Animation and Virtual
Worlds 17 (3-4): 199-206.

[6] Hamilton, W.D., ”Geometry for the selfish herd,” J. Theor. Biol., 31 (1971), pp.
295-311

[7] Grandin, T.,” Understanding Flight Zone and Point of Balance for Low Stress Handling
of Cattle, Sheep, and Pigs,” Dept. of Animal Science Colorado State University, May 2019

[8] Anderson, R.M., "Formation Flight as a Cooperative Game,” Virginia Polytechnic
Institute and State University, August 1998

9] Cui,X., Gao,J., Potok, E.T ”A flocking based algorithm for document clustering
analysis,” Oak Ridge National Laboratory, April 2006

[10] Darling, F.F.,” A herd of red deer: A Study of Animal Behavior,” Luath Press, 2008

[11] King, J.A,Wilson, M.A., Wilshin D.S., Lowe, J., Haddadi, H., Hailes, A.S.,

Morton,J., ”Selfish-herd behavior of sheep under threat”, Current Biology, Volume
22, Issue 14, 2012, Pages R561-R562

[12] Overleaf, ”Latex Basics,” Overleaf 2020

[13] Ruiz-Vanoye, A.J., Diaz-Parra, O., et al.,” Meta-Heuristics Algorithms based on the
Grouping of Animals by Social Behavior for the Traveling Salesman Problem,” International
Journal of Combinatorial Optimization Problems and Informatics, Vol. 3, No. 3, Sep-Dec
2012, pp. 104-123

[14] Vaughan, R., Sumpter, N., Henderson, J., Frost, A., Cameron, S., ”"Experiments in
automatic flock control,” J. Robot. Auton. Syst., 31 (2000), pp. 109-117

10

7 Appendix A

| #!/usr/bin/env python3
-*- coding: utf-8 -*-

Created on Sun Nowv 29 15:18:13 2628

Bauthor: oliviawilburn

import numpy as np

import matplotlib.pyplot as plt

import os

#import moviepy.video.lo. ImogeSequencellip

def dobunchesofruns():

dirs=["runl", "'run2”, "run3",...]
print{dirs[1], @.084+1/1000%
for 1 in range (18):

sim{dirs[1], alpho=8.884+1/1088, Nt=5)

def sim{run,alpha=4e-3,beta=3e-3, gommo=4e-4 ,vmax=1.80,Na=188, Nt=58, dt=1.8):

output folder file
#run = 'rund’'
dir = "./" +run 4+ 'S’

force parameterss

alpha = 4e-3 # force 1, center seeking

beta = 3e-3 # force 2, velocity matching
gamma = #4e-4 # force 3, collision avoidance
vmax = 1.8 # force 4, maximum v limit

number of animals
Na = 108

number of time points in simulation

Nt = 5@
time step
dt = le-@

reflecting boundary conditions?
reflect = True

corral ronges
xR = 108.0
¥R = 180.8
zR = 108.4

11

lims = [xR, vR, zR]

working arrays
r = np.zeros{{Na,3))
v = np.zeros{{Na,3))

#distonce arrays
ré = np.empty{shape=_Na,Na}}

initiol conditions
for 1 in rangelMNad:
for j in range(2):
rli;j] = 48 + 28*np.random.rand{1)
v[i,3] = -8.5 + 1*np.random.rand(1l}
r[1,2] = zk / 2

plt. figure()

plt.plotl{r[:,8], r[:,1], marker="o0",linestyle=""3
plt.x1im{@, xR}

plt.ylim{@, vR)

plt.gcal).set_aspect('equal’, adjustable="hox')
#plt.axis{'off")

plt.xticks{[]D)

plt.yticks([]D)
plt.close()

filenm = dir + "file_{:83d}.png".format{@)
plt.savefig{filenm)

rcm = [@,8,8]
force arrays
fl = np.zeros({Na,3))
f2 = np.zeros((Na,3))
f3 = np.zeros({(Na,3))
helper arrays
rcmrel = np.zeros{{Na,3)) # 4th element is the distonce
for 1 1in range{l,Nt):
rcm, rocmrel = cmir,Na)

ré = dist{r,Na)

calculate the cm force
fl = forcellalpha, rcmrel, Na)

calculate the velocity matching force

12

f2 = forceZ{beta, rZ, v, Nad

colculate the collision avoidance force
f3 = force3{gamma, r, rZ, Na)

for 3 1n range{Na):
rli,:1 += v[j,:] * dt
wli,:] 4= (FL[3.:0 + F2[3,:1 + F3[3,:13 * dt

opply the speed limit
v = forced(v, vmax, Na)

if reflect == True:
v = forceS{r, v, lims, Na)

print(i)

plt.figure()

plt.plot{r[:,8], rl:,1], marker="0",linestyle=""3
plt.xlim{@,xR)

plt.ylim{@,vR)

#plt.axis{'off')

plt.xticks{[]1}

plt.vkicks([]1}

plt.axis{'of f')

filenm = dir + "file_{:83d}.png".format{1i)
plt.savefig{filenm)

plt.close()

#videolrun)

def dist{r,n}:
ré = np.zeros{{n,n})
for 1 in range{n-1):
for 3 in range(i+l,n):
r2[i,j] = np.sqrel (r[i,0]-r[7,010%*2 « (r[i,1]-r(j,110%*2 + (r[i,2]-r[7,2]0%*%2)
r2[j,1] = r2[1i,3]

return ré

def cm{r,Nad:

13

def

def

def

rcm
rcmrel

np.empty(3)

calculate the center of
for § in range{3):

np.empty{shape=_CNa, 31D

mass position

rcm[3] = np.sum{r[:,3]3/Na

for 3 in rangelMNad:
rcmrel[§,8:3] = rcm -

return rcm, rcmrel

forcel{a, r, n):
f = np.zeros(shape=_{n,3))

for 1 in rangeln):

if np.sum{np.abs{r[i,:
fli,:] = a * r[i,:

return f

forceZ{a, r2, v, nl:
f = np.zeros(shape=_{n,3))

for 1 1in range{n):
for 3 1n range(n):

for k in range(3):

ifil= g
FLi,k] +=

return f

forcedfa, r, rd, ni:
f = np.zeros(shape=_{n,3))

for 1 in range(n):
for 4 1n range(n):

for k in range{3):

ifil= i
FLi,k] 4=

return f

rl3,:]

123 1= 8:
]

a * np.sumiv[j,k] / r2[1,71)

a * np.sum{{r[i,k]-r[3,k]) / r2[1,3]12

14

def forced(v, wvm, n):

for 1 in rangeln):
z = np.sum(v[i,:]**2)
if z = vm**2:
wli,:] *= vm / np.sgrt{z)
return v

def force5(r, v, lims, n):
for 1 in range(n):

for § in range(3):
if (r[i,3] = @) or {r[i,3] = Llims[j]D:

v[i,i] *= -1
return v
def wideo{run):
image_folder = "./" % run + 'S

fps = 18
image_files = [image_folder+'/"+img for img in sorted{os.listdir(image_folder))} if img.endswith(".png"}]

clip = moviepy.video.1lo.ImageSequencellip. ImageSequenceClip(image_files, fps=Ffps)
clip.write_videofile(run + ".mpd")}

15

	Introduction
	Method
	Selfish Herd Theory
	Boid's Algorithm
	Personal Research

	Results
	Herd Simulation Images
	
	
	

	Conclusion
	Acknowledgements
	References
	Appendix A

