1 Maximizing Projectile Range on an

Inclined Plane

Scott Blankenbaker

We attempt to find the angle maximizing the range of a projectile fired with a fixed velocity on an inclined plane. The equations of motion of the projectile, and the line of the surface, are then:

$$x_p(t) = x_p(0) + v_{ix} * t = v_i * cos(\theta) * t$$

$$y_p(t) = y_p(0) + v_{iy} * t + \frac{1}{2}a * t^2 = v_i * sin(\theta) * t - \frac{g}{2}t^2$$

$$y_s(x) = tan(\theta_s) * x$$

Solving the first equation for t, then substituting into the second, allows us to express the projectile motion in terms of horizontal position:

$$y_p(x,\theta) = tan(\theta) * x - \frac{g}{2v_i^2} x^2 sec^2(\theta)$$

We then define f(x) as the difference between the projectile and the ground:

$$f(x,\theta) = y_p(x,\theta) - y_s(x)$$

We note that the range is when this difference is equal to zero:

$$f(r,\theta) = y_p(r,\theta) - y_s(r) = 0$$

We then differentiate with respect to θ to begin our maximization:

$$\frac{df}{d\theta} = \frac{\partial y_p}{\partial r} * \frac{dr}{d\theta} + \frac{\partial y_p}{\partial \theta} - \frac{\partial y_s}{\partial r} * \frac{dr}{d\theta} = 0$$

$$(tan(\theta) - \frac{g}{v_i^2} r sec^2(\theta)) * \frac{dr}{d\theta} + sec^2(\theta) * r - \frac{g}{v_i^2} r^2 sec^2(\theta) tan(\theta) - tan(\theta_s) \frac{dr}{d\theta} = 0$$

$$\frac{dr}{d\theta} (tan(\theta) - tan(\theta_s) - \frac{g}{v_i^2} r sec^2(\theta)) + sec^2(\theta) * r - \frac{g}{v_i^2} r^2 sec^2(\theta) tan(\theta) = 0$$

$$\frac{dr}{d\theta} = \frac{sec^2(\theta) * r - \frac{g}{v_i^2} r^2 sec^2(\theta) tan(\theta)}{tan(\theta) - tan(\theta_s) - \frac{g}{v^2} r sec^2(\theta)}$$

Seeking a maximum, we set $\frac{dr}{d\theta} = 0$, noting that this requires either $\sec^2(\theta) * r - \frac{g}{v_i^2} r^2 sec^2(\theta) tan(\theta) = 0$ or $tan(\theta) - tan(\theta_s) - \frac{g}{v_i^2} rsec^2(\theta)$ tending to infinity. We note the latter occurs when $\cos(\theta) = 0$, representing shooting straight up or down; this minimizes range, and isn't our goal, so we examine the former.

$$sec^{2}(\theta) * r - \frac{g}{v_{i}^{2}}r^{2}sec^{2}(\theta)tan(\theta) = 0$$
$$r * sec^{2}(\theta)(1 - \frac{g}{v_{i}^{2}}rtan(\theta)) = 0$$

We neglect the r = 0 case and note $sec^2(\theta)$ never equals zero, giving:

$$r = \frac{v_i^2}{g*tan(\theta)}$$

We return to our equations of motion, setting $y_p = y_s$, and substitute in our r.

$$tan(\theta) * r - \frac{g}{2v_i^2} r^2 sec^2(\theta) = tan(\theta_s) * r$$

$$\frac{v_i^2}{g} - \frac{v_i^2}{2g} \frac{sec^2(\theta)}{tan^2(\theta)} = tan(\theta_s) * \frac{v_i^2}{g*tan(\theta)}$$

$$1 - \frac{1}{2}csc^{2}(\theta) = tan(\theta_{s})cot(\theta)$$

$$sin^2(\theta) - \frac{1}{2} - tan(\theta_s)cos(\theta)sin(\theta) = 0$$

$$\theta = \frac{1}{2}(n * \pi - arctan(\frac{1}{tan(\theta_s)})) = \frac{1}{2}(n * \pi - (\frac{\pi}{2} - \theta_s))$$

The n*pi term adjusts for the repeated period of tangent over sine and cosine; we only care about the even or odd terms, so we get two solutions. The even solution gives backwards trajectories, so we choose n=1, giving: $\theta_{max}=\frac{1}{2}(\theta_s+\frac{\pi}{2})$

This is equivalent to stating that the firing angle for maximum range is halfway between the surface and vertical.

2 Supporting Figures

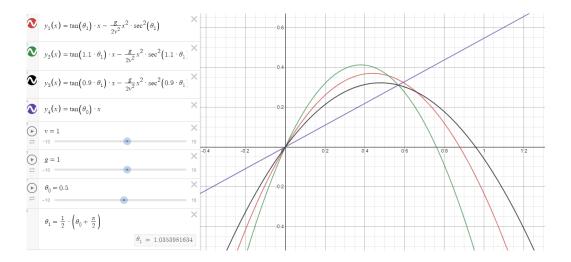


Figure 1: An upward surface (blue), with the ideal trajectory (red), and trajectories just above and below it.

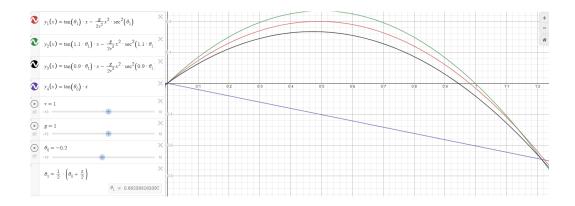


Figure 2: An downward surface (blue), with the ideal trajectory (red), and trajectories just above and below it.

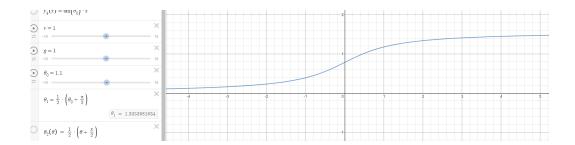


Figure 3: The relationship between ideal firing angle and slope $m = tan(\theta_s)$