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The ubiquity of isentropic processes in heat engines and a plethora of other physical 
systems necessitate a discussion of the adiabatic, however, it all too often seems to be the 
case that derivations of the constancy of pVg in adiabatic processes are so unintuitive that 
the majority of students would be left at a loss to explain why this should be so. Dare I say 
that many physics faculty, myself included, are also often without a simple picture of this 
process. We are often forced, out of the interest of time, to accept this result as a matter of 
faith, a response contrary to our goals of developing a respect for critical thinking and logic 
that forms the foundation of our studies. 
 
Let us consider a cylinder of length L and cross sectional area A that is filled with an ideal 
gas. For the purposes of this discussion we consider an ideal gas to be one in which the 
volume occupied by the particles is small compared to the total volume of the system and 
there are no long-range forces between particles so that there is no need to account for 
additional potential energy terms in the energy balance. Let the cylinder have a free end (a 
piston) that can be held fixed or allowed to move. By examining the collisions of single 
particles with the wall we find that the momentum transferred to the piston per unit time is 
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from which we can define the average force as 
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The force per unit area is the single-particle (sp) pressure, with V=AL, we have  
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Considering a maxwellian distribution of the form 
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where we can define the temperature T in terms of the thermal velocity as 
 

T = 𝑚𝑣78'  
 
Averaging the single-particle pressure over the distribution, the result is that vx2 is simply 
replaced by vth2. Using the prior definition for the total pressure, 
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𝑁
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An adiabatic process is one in which there is no heat flow in or out of the gas during a 
change of volume. One may think of such processes as happening in the limit in which the 
time over which a change in volume occurs to be small compared to the time scale for 
thermal diffusion through the boundaries. Under these conditions, we may consider the 
boundaries to be perfectly insulating. It follows then that any change in internal energy, the 
sum of particle kinetic energy plus that due to internal motions such as vibrations or 
rotations, can only be a function of the work done on or by the gas. 
 
To develop a description of the adiabatic process, we will consider the case of a 
monoatomic gas (no internal structure in which to store kinetic energy). Let us consider, 
for the sake of argument, that the gas will be expanding and doing work on the piston. The 
argument works equally well in the reverse, but it will be easier to develop the discussion 
by examining a specific case. Let the gas be in thermal equilibrium with itself, that is, it is 
described by a single temperature, T0 for all degrees of freedom, 
 

𝑇&,C = 𝑇D,C = 𝑇E,C = 𝑇C 
 
  
If we consider an expansion of the volume due to movement of the piston through a small 
distance Dx, the work done by the gas is  
 

𝑊 = −𝑝	𝑑𝑉 
 
where dV is a positive number. We now need to consider the source of this work from the 
perspective of the motions of the gas particles. Recalling that the pressure fundamentally 
represents the flux of momentum through a given area, it follows that the work done by the 
gas is related to a change in the kinetic energy of the gas in the direction of motion of the 
piston. During this brief interval of motion of the piston, the kinetic energy of the gas in 
the x-direction must decrease because it is the x-motion alone that is responsible for the 
displacement of the piston. In the following analysis we let the subscript “0” refer to the 
conditions before the movement of the position, the subscript “1” refers to the intermediate 
state after the piston has moved but before thermal equilibrium is re-established, and the 
subscript “2” refers to the final state after thermal equilibrium is established. 
 

𝑊 =
1
2𝑁𝑚

I𝑣&,>' − 𝑣&,C' J =
1
2𝑁

I𝑇&,> − 𝑇&,CJ =
1
2𝑁

I𝑇&,> − 𝑇CJ 
 
This expression can be inverted to solve for the intermediate x temperature prior to the re-
establishment of thermal equilibrium. 
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The y and z temperatures are unaffected by the motion of the piston, 
 

𝑇D,> = 𝑇C 
 

𝑇E,> = 𝑇C 
 
Once the system comes back into thermal equilibrium with itself it will again have a single 
temperature. The equipartition of kinetic is the expression of a final temperature equal to 
the average of the intermediate temperatures, that is, 
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Or, solving for the infinitesimal change in temperature, dT=T2 – T0, we have 
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And using the ideal gas law to remove p from the expression, we have 
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from which it readily follows that 
 

𝑇 = 𝑐𝑉N'/P 
 
where c is a constant. This relation for temperature can be inserted into the ideal gas law, 
 

𝑝𝑉 = 𝑐𝑁𝑉N'/P 
 
For constant N, this expression can be rearranged to find 
 

𝑝𝑉Q/P = 𝑐𝑁 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
 
The exponent of the volume is the adiabatic index, g. For a monoatomic gas this value if 
5/3. For molecular gases with internal structure g may be substantially less than 5/3, but 
always greater than 1. For an ideal two-dimensional gas, as may be found on a surface for 
example, g takes the value 2. 
 
Given the prior formulation of the problem, it is quite easy to see how the result can be 
generalized to a description of a gas with k degrees of freedom. The only change occurs in 
the averaging of the temperatures between the intermediate and final steps, that is 
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leading to 
 

𝑝𝑉 = 𝑐𝑁𝑉N'/W  
 
 
and the generalized adiabatic index for a k-dimensional gas, 
 

𝛾 =
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The central idea to this derivation of the equation of state for an adiabatic process is that a 
gas with k degrees of freedom has k reservoirs of energy. During a change of volume, only 
one of those degrees of freedom is directly affected by the exterior constraints, and 
therefore only one component of the energy changes. If the velocities associated with the 
change in volume are small compared to the sound speed in the gas then we may consider 
this a quasi-static process such that after each infinitesimal time the system again reaches 
equilibrium with itself and a single temperature is re-established. This intuitive model also 
shows quite clearly why the adiabatic index must tend toward unity in the limit of infinite 
degrees of freedom. Under these conditions, a finite energy due to the work done will be 
distributed over an infinite number of energy reservoirs, resulting in a vanishing 
temperature change. 


