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1. Introduction 
 
In this document we will examine the effects of superposition of waves from two sources. 
If the waves by some means acquire a different phase (for example, by traversing a 
different path), then the amplitude of the superposition may be either enhanced 
(constructive interference), or diminished (destructive interference), an effect generally 
referred to as “interference”. 
 
The phase of each of the component waves is influenced by three factors: the spatial 
dependence through the kx term, the temporal dependence through the wt term and the 
phase factor f. We will consider what happens when each of these terms contributing to 
the wave phase is varied between sources. 
 
 
2. Background 
 
To begin, let us consider two sources emitting waves of the form 
 

𝑝"(𝑥, 𝑡) = 𝑃" cos(𝑘"𝑥" − 𝜔"𝑡 + 𝜙"), 
 

𝑝2(𝑥, 𝑡) = 𝑃2 cos(𝑘2𝑥2 − 𝜔2𝑡 + 𝜙2). 
 
where the amplitudes P1 = P2 are positive quantities. At this most general stage of the 
formulation we allow each wave to have distinct amplitudes, distinct frequencies (w1 and 
w2) and distinct phase factors (f1 and f2). Because the wavenumber and angular 
frequency are constrained by the condition w/k = v, it is necessary only to specify one or 
the other of w or k. To proceed we simplify the analysis by introducing a shorthand 
notation and let the argument of the cosine function be lumped together as a single 
variable, q. That is, 
 

𝑝"(𝑥, 𝑡) = 𝑃" cos(𝜃"), 
 

𝑝2(𝑥, 𝑡) = 𝑃2 cos(𝜃2), 
where,  
 

𝜃" = 𝑘"𝑥" − 𝜔"𝑡 + 𝜙" 
 

𝜃2 = 𝑘2𝑥2 − 𝜔2𝑡 + 𝜙2 
 
 

The mathematical representation of the superposition of two waves is that the total 
fluctuation is just the sum of the two individual waves, that is, 
 

𝑝(𝑥, 𝑡) = 𝑝"(𝑥, 𝑡) + 𝑝2(𝑥, 𝑡) = 𝑃" cos(𝜃") + 𝑃2 cos(𝜃2). 



 
The presence of distinct amplitudes as we have accounted for here prevents us from 
using trig identities to simplify this expression, as was done in the textbook. To make this 
form more amenable to such analysis we first define the sum and difference amplitudes, 
 

𝑃4 =
𝑃" + 𝑃2
2  

 

𝑃6 =
𝑃" − 𝑃2
2  

 
and their inverse relationships, 
 

𝑃" = 𝑃4 + 𝑃6 
 

𝑃2 = 𝑃4 − 𝑃6 
 
so that the prior equation for the sum of waves takes the form, 
 

𝑝(𝑥, 𝑡) = 𝑃4[cos(𝜃") + cos(𝜃2)] + 𝑃6[cos(𝜃") − cos(𝜃2)]. 
 

Note that in the case of equal amplitudes, the difference term, P—, vanishes and we 
recover the simpler formulations already seen.  At this point, we are nearly ready to 
apply our trig identities. Recall, 
 

sin(𝑎 ± 𝑏) =sin(𝑎) cos(𝑏) ± cos(𝑎) sin	(𝑏) 
 

c𝑜𝑠(𝑎 ± 𝑏) = cos(𝑎) cos	(𝑏) ∓ sin(a) sin	(𝑏). 
 

And by defining new variables a and b as follows, 
 

𝛼 = 𝑎 − 𝑏 
 

𝛽 = 𝑎 + 𝑏 
 
with the inverse relationships, 
 

𝑎 =
𝛼 − 𝛽
2  

 

𝑏 =
𝛼 + 𝛽
2  

 
we can easily derive the following trig relationships from the prior ones by taking sums 
and differences of the terms on the left-hand-side to derive, 
 

c𝑜𝑠(𝛼) + c𝑜𝑠(𝛽) =2cos E
𝛼 − 𝛽
2 Fcos E

𝛼 + 𝛽
2 F 



 

c𝑜𝑠(𝛼) −c𝑜𝑠(𝛽) =2 sin E
𝛼 − 𝛽
2 F sin E

𝛼 + 𝛽
2 F 

 
Applying these last trig identities to our equation for the sum of waves, we have 
 

𝑝(𝑥, 𝑡) = 2𝑃4 cos(𝜃6) cos(𝜃4) + 2𝑃6 sin(𝜃6) sin(𝜃4) 
 
where 

𝜃4 =
𝜃" + 𝜃2
2  

 

𝜃6 =
𝜃" − 𝜃2
2  

 
represent the sum and difference of the generalized phases of the waves. We anticipate 
that the terms containing θ+ will be the wave-like part, and everything else we can lump 
into the effective amplitude. Recalling that an oscillator of the form 
 

𝑓(𝑡) = 𝐴 cos(𝜔𝑡) + B sin(𝜔𝑡) 
 
has amplitude (A2 + B2)1/2, the wave superposition expression can be put in the form 
 

𝑝(𝑥, 𝑡) = 𝑃JKK cos(𝜃4 + 𝜙) 
 
where the phase factor takes the form 
 

𝜙 = − tan6" M
𝑃" − 𝑃2
𝑃" + 𝑃2

tan(𝜃6)N 

 
and the effective amplitude for our two-wave system is 
 

𝑃JKK2 = 4𝑃42 cos2(𝜃6) + 4𝑃62 sin2(𝜃6) 
 
or, using the identity sin2(θ) + cos2(θ) =1 and rearranging, we have 
 

𝑃JKK = (𝑃" + 𝑃2)P1 −
4𝑃"𝑃2

(𝑃" + 𝑃2)2
sin2(𝜃6) 

 
We cannot further simplify this expression and proceed by considering specific cases. 
 
3. The case of equal amplitudes 
 
It is impossible to generate perfect destructive interference (meaning that the effective 
amplitude goes to zero) except in the case where P1 = P2. However, even when the 
amplitudes are not equal interference still occurs and there will be regions of more intense 



and less intense sound (or light) waves. We can see this in the general amplitude 
expression, found at the bottom of page 3, by setting the argument inside the square root 
to zero 
 

1 −
4𝑃"𝑃2

(𝑃" + 𝑃2)2
sin2(𝜃6) = 0 

 
Or, letting x = P1/P2 we have, after solving for the sine, 
 

sin2(𝜃6) =
(1 + 𝑥)2

4𝑥  
 
The right-hand-side (RHS) of this function takes the value 1 when x=1. Because there is 
only one solution for this value, we know that x=1 either represents a maximum or 
minimum of the RHS. It must be a minimum because if we choose any other value we 
find that the RHS takes a value larger than 1. For example, if we choose x=3, the RHS is 
equal to 4/3.  
 
It is thus proved that perfect destructive interference only occurs when the amplitudes at 
a given location are equal. When this condition is satisfied (using P0 to represent the 
amplitude of both waves), we find that the effective amplitude expression takes a simpler 
form: 
 

𝑃JKK = 2𝑃ST1 − sin2(𝜃6) = 2𝑃S cos(𝜃6) 
 
This is exactly the result derived in lecture and in the textbook for superposition of equal 
amplitude waves when kDx/2 is substituted for q_. In the following we will consider this 
simplified expression for the case of equal amplitude waves. 
 
 
 
4. Sources with different frequencies 
 
Summing of two wave sources with different frequencies produces the effect of “beats”. 
When the frequency difference between two sources is small compared to the mean 
frequency, superposition of such waves produces the sensation of a low frequency, 
periodic fluctuation of the amplitude of the sound waves. With waves of different 
frequencies (and hence, different wavenumbers) and possibly phase factors, the q_ term 
takes the form, but assuming that the sources are at the same location (x0), we have: 
 

𝜃6 = (𝑘" − 𝑘2)𝑥S − (𝜔" − 𝜔2)𝑡 + (𝜙" − 𝜙2) 
 
Because we are more concerned with the temporal variation in this problem, we will 
simplify this expression and lump the spatial dependence in with the phase constants with 
the following definition 
 
 



∆𝜃 = (𝑘" − 𝑘2)𝑥S + (𝜙" − 𝜙2) 
 
So that we have 
 
 

𝑃JKK = (𝑃" + 𝑃2)P1 −
4𝑃"𝑃2

(𝑃" + 𝑃2)2
sin2 E

∆𝜔	𝑡 + ∆𝜃
2 F 

 
This represents modulation of the effective amplitude at a frequency of Dw/2, which is 
called the modulation frequency, wmod. To our ear, the more meaningful quantity is the 
frequency with which a minimum of the effective amplitude is reached, which occurs every 
time sine takes the values ±1, or twice per cycle. Therefore the beat frequency is wbeat = 
2wmod = Dw. 

 
Figure 1: Resulting waveform from the addition of equal amplitude waves at frequencies of 3.0 Hz and 3.2 
Hz. The resulting average frequency is 3.1 Hz, with a modulation frequency of 0.1 Hz. The beat frequency 
is 0.2 Hz, since once every 5 seconds we develop a lull in the amplitude. 
 
 
 
5. Spatially separated sources of the same frequency and same phase factor 
 
This case represents the interference resulting from waves emitted by two speakers, or 
in the case of light waves, the two-slit diffraction pattern. We consider the additional 
constraint that a single oscillator drives the two sources so that they have the same phase 
factors. With these conditions, the sum and difference phases take the form 
 

𝜃4 = 𝑘𝑥VWX − 𝜔𝑡 + 𝜙 
 

𝜃6 =
𝑘(𝑥" − 𝑥2)

2 =
𝑘∆𝑥
2  

 
where xavg = (x1 + x2)/2  is the average distance from the sources at the measurement 
location. In the case of equal amplitudes (P1 = P2 = P0), we have a simpler expression, 
which does exhibit perfect destructive interference, 



 

𝑃JKK = 2𝑃S cos E
𝑘∆𝑥
2 F 

 
The only computational exercise left at this point is to calculate Dx for a given 
configuration, a purely geometric problem. This can be easily done numerically to any 
desired accuracy, or we can use various approximations such as Dx»d sin(θ),  where d is 
the spacing between the sources. 
 
We now ask what conditions Dx must satisfy so that we achieve destructive interference 
in the case of equal amplitudes. This is equivalent to finding the values of the argument 
for which cosine vanishes, leading to the condition 
 

𝑘∆𝑥
2 = (2𝑛 + 1)

𝜋
2 

 
or equivalently, 
 

∆𝑥 = (2𝑛 + 1)
𝜆
2 

 
where n can be any integer (positive, negative or zero). Note that 2n+1 produces only the 
odd integers, so we could, without loss of generality, replace 2n+1 with an integer j = ±1, 
±3, ±5, … and so on. The values of allowable n for a particular case can be determined 
by considering the maximum possible Dx. For the case of the double-slit experiment, we 
found Dx » d sin(θ), where θ is properly defined as the angle between the midpoint of the 
slits and a circle of radius r in the plane of the sources. This expression clearly shows that 
the maximum possible Dx is d, and occurs when θ = p/2, which makes sense. 
 
Setting Dx=d we can solve for the maximum n for destructive interference. Doing so gives 
  

max
	
(𝑛) ≤

𝑑
𝜆 −

1
2 

 
where we have defined the function max(n) to mean “n can be the largest integer less 
than or equal to this value”. For example, if we consider the case of a 40 Hz sound wave 
(in air at v=340 m/s), then λ = 8.5 m, with two sources separated by 20 m, then we have 
max(n) = 1.85, so that nmax = 1. The total number of destructive interference regions to 
the right of center is 2 (n=0 and n=1, or equivalently, j=+1  and j=+3), so that the total 
number of interference fringes is 4 (as seen by the dark bands in Figure x). 



 
Figure 2: Interference pattern for sound waves with f = 40 Hz in air with a sound speed of 340 m/s. The 
sources are placed at +/- 10 m along the x-axis. For this case we have five complete constructive 
interference bands and four complete destructive interference bands. The regions along the x-axis are 
neither complete destructive or constructive interference and do not count toward these totals. 
 
We can repeat this analysis and now solve for the points of constructive interference. This 
is done by setting  
 

cos E
𝑘∆𝑥
2 F = ±1 

 
which leads to 
 

𝑘∆𝑥
2 = 𝑛𝜋 

 
Again setting Dx = d, we can solve for the number of constructive interference fringes: 
 

max
	
(𝑛) ≤

𝑑
𝜆 

 

Using the same values as in the prior example, the RHS of this expression is equal to 
2.35, which means that n can take the values 0, 1 or 2. Given that the n=0 fringe occurs 



right in the center of the pattern, the total number of constructive interference fringes is 5, 
as can be seen in Figure 2. 
 
It is interesting to also examine the general solution (P1≠P2) because the sound 
amplitude from a source tends to decrease inversely proportional to the distance from the 
source. Thus, even if two sources are established to have the same intensity at one point, 
it will not be true in general that the amplitudes are equal elsewhere. 

 
Figure 3: Interference pattern for the case of f = 40 Hz sound waves in air with a sound speed of 340 m/s. 
This case illustrates the pattern we expect if the amplitude of the waves from each source falls off inversely 
proportional to the distance from the source. Comparing to Figure 2, we see that the arrangement of the 
regions of more-or-less constructive or destructive interference patterns does not change significantly, 
though the relative amplitude does. 
 
 
6. Spatially separated sources of the same frequency but different phase factor 
 
The analysis of the case of two spatially separated sources driven at the same frequency 
but with a phase difference between the two drivers follows the prior argument, only now 
kDx is replaced by kDx + Df. This has the effect of shifting the lines of destructive and 
constructive interference to the left or right, depending on the sign of the phase shift. The 
condition on Dx for constructive interference is now 
 

𝑘∆𝑥 + ∆𝜙
2 = 𝑛𝜋 

 



where 
 

∆𝜙 = 𝜙" − 𝜙2. 
 
Or, using the approximation Dx » d sin(θ) we can solve for the angles of the lines of 
constructive interference. 
 

sin(𝜃) = M𝑛 −
∆𝜙
2𝜋N

𝜆
𝑑 

 
We are often concerned with the position of the central (n=0) beam. This relation tells us 
that  

sin(𝜃S) = −
∆𝜙
2𝜋

𝜆
𝑑 

 
If we want to sweep a beam through a specified angle, this formula tells us the relationship 
between that angle and the phase difference required to produce this effect. Many 
industrial and experimental techniques work on this principle, including phased-array 
radar, directional ultrasound and radio frequency heating of thermonuclear plasmas. 

 
Figure 4: Same parameters as in Figure 2  (f = 40 Hz, v = 340 m/s) except that the phase of the right 
speaker is advanced by p/2 relative to the left speaker, that is, Df = -p/2. Under these conditions the central 
maximum is steered to a positive angle of approximately 6o, in agreement with the above plot. Since the 
central maximum is displaced to the left by about 20 meters at a distance of 200 meters, this angle is 
approximately tan-1(20/200) » 6o. 


