

Introduction

 We are now using vectors to describe the motion of objects in terms of position, velocity and acceleration. As vectors, these quantities take the following forms:

$$\vec{r} = x\hat{x} + y\hat{y} + z\hat{z}$$

$$\vec{v} = v_x\hat{x} + v_y\hat{y} + v_z\hat{z}$$

$$\vec{a} = a_x\hat{x} + a_y\hat{y} + a_z\hat{z}$$

 $\hat{x}, \hat{y}, \hat{z}$ have no units, they just indicate directions

x, y, z have units of length

 v_x, v_y, v_z have units of length/time

 a_x, a_y, a_z have units of length/time²

• What is the vector dot product of \hat{x} and \hat{y} ?

(a) +1

(c) 0

(b) -1

(d) cannot be defined for unit vectors

• What is the vector dot product of \hat{x} and \hat{y} ?

(a) +1

(c) 0

(b) -1

(d) cannot be defined for unit vectors

Answer: (b)

• Explanation: \hat{x} and \hat{y} are orthogonal (perpendicular) and the dot product of <u>any</u> two vectors that are orthogonal is always zero.

Calculate the dot product for the following vectors:

$$\vec{A} = 3\hat{x} - 4\hat{y}$$

$$\vec{B} = 8\hat{x} + 5\hat{y}$$

Calculate the dot product for the following vectors:

$$\vec{A} = 3\hat{x} - 4\hat{y}$$

$$\vec{B} = 8\hat{x} + 5\hat{y}$$

$$\vec{A} \cdot \vec{B} = (+3)(+8) + (-4)(+5) = 24 - 20 = 4$$

• How can you use the dot product to calculate the length of vector \bar{A} ?

$$\vec{A} = 3\hat{x} + 4\hat{y}$$

How can you use the dot product to calculate the length of vector A?

$$\vec{A} = 3\hat{x} + 4\hat{y}$$

$$\vec{A}$$

$$3\hat{x}$$

• Answer:
$$\vec{A} \cdot \vec{A} = (+3)(+3) + (+4)(+4) = 3^2 + 4^2 = 25$$

$$\vec{A} \cdot \vec{A} = L^2 \implies L = \sqrt{\vec{A} \cdot \vec{A}} = 5$$

• What is the vector dot product of vectors \vec{A} and \vec{B} ?

$$\vec{A} = 3\hat{x} + 4\hat{y}$$

$$\vec{B} = 6\hat{x}$$

• What is the vector dot product of vectors \vec{A} and \vec{B} ?

$$\vec{A} = 3\hat{x} + 4\hat{y}$$

$$\vec{B} = 6\hat{x}$$

$$\vec{A} \cdot \vec{B} = (+3)(+6) + (+4)(0) = 18 + 0 = 18$$

• What is the vector dot product of vectors \vec{A} and \vec{B} ?

$$\left| \vec{A} \right| = 5$$

$$\vec{B} = 6\hat{x}$$

• What is the vector dot product of vectors \vec{A} and \vec{B} ?

$$|\vec{A}| = 5$$

$$\vec{B} = 6\hat{x}$$

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos(\theta) = (5)(6)\cos(53.1^\circ) = (30)(0.6) = 18$$

• What is the vector cross product of $\hat{x} \times \hat{y}$?

(a)
$$+1$$

(c)
$$+\hat{z}$$

(b)
$$-1$$

(d)
$$-\hat{z}$$

• What is the vector cross product of $\hat{x} \times \hat{y}$?

(a) +1

(c) $+\hat{z}$

(e) 0

(b) -1

(d) $-\hat{z}$

(f) ∞

Answer: (c)

For two distinct vectors, the vector cross product always produces a new vector that is <u>perpendicular to both</u> of the vectors.

The direction can be found using the right hand rule.

• For each of the following, sketch the direction of \vec{C} for $\vec{C} = \vec{A} \times \vec{B}$.

• For each of the following, sketch the direction of \vec{C} for $\vec{C} = \vec{A} \times \vec{B}$.

• For each of the following, sketch the direction of \vec{C} for $\vec{C} = \vec{A} \times \vec{B}$.

• For each of the following, sketch the direction of \vec{C} for $\vec{C} = \vec{A} \times \vec{B}$.

$$\left| \vec{A} \right| = 5 \qquad \left| \vec{B} \right| = 4$$

• For each of the following, calculate the magnitude of \vec{C} for $\vec{C} = \vec{A} \times \vec{B}$.

(a)

$$\vec{B}$$

$$\left| \vec{A} \right| = 5 \qquad \left| \vec{B} \right| = 4$$

• For each of the following, calculate the magnitude of \vec{C} for $\vec{C} = \vec{A} \times \vec{B}$.

(a)
$$|\vec{C}| = |\vec{A}| |\vec{B}| \sin(\theta)$$

= (5)(4) $\sin(90^\circ)$
= 20

(b)
$$|\vec{C}| = 20$$

$$\left| \vec{A} \right| = 5 \qquad \left| \vec{B} \right| = 4$$

• For each of the following, calculate the magnitude of \vec{C} for $\vec{C} = \vec{A} \times \vec{B}$.

$$\left| \vec{A} \right| = 5 \qquad \left| \vec{B} \right| = 4$$

• For each of the following, calculate the magnitude of \vec{C} for $\vec{C} = \vec{A} \times \vec{B}$.

(a)
$$\theta = 110^{\circ}$$
 \vec{A}

(b)

(a)
$$|\vec{C}| = |\vec{A}||\vec{B}|\sin(\theta)$$

= $(5)(4)\sin(110^\circ)$
= $(20)(0.939) = 18.8$

(b)
$$|\vec{C}| = |\vec{A}||\vec{B}|\sin(\theta)$$

= (5)(4) $\sin(60^\circ)$
= (20)(0.866) = 17.3

Group Work

- Solve for the components of vector \overline{B} given the constraints:

(a)
$$\vec{A} \cdot \vec{B} = 0$$

(b)
$$\vec{A} = 3\hat{x} - 4\hat{y} + 2\hat{z}$$

(c) \vec{B} must be in the x-y plane

(d)
$$|\vec{B}| = 10$$