

Wheels and moment of inertia

Fundamental definition

- Rotation (for this class) will consider motion on a circular path where the speeds may be changing in time.
- Can measure angular position in three different units:

1 revolution =
$$360^{\circ} = 2\pi$$
 radians

• Fundamental relationship for a circle:

Linear to rotational conversions

 We can convert between linear and rotational quantities using the following definitions:

Distance & angle:

$$s = \theta r$$

Velocity & angular velocity:

$$v = \omega r$$

Acceleration & angular acceleration:

$$a = \alpha r$$

Introduction

Linear equations

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$v = v_0 + at$$

$$x = x_0 + \frac{1}{2}(v_0 + v)t$$

$$v^2 = v_0^2 + 2a(x - x_0)$$

Rotational equations

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega = \omega_0 + \alpha t$$

$$\theta = \theta_0 + \frac{1}{2}(\omega_0 + \omega)t$$

$$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$$

• If wheels rotate, how is is it that we were able to use static friction when considering how cars accelerate or decelerate?

- If wheels rotate, how is is it that we were able to use static friction when considering how cars accelerate or decelerate?
- Rolling without slipping means that the point of contact at the road is <u>stationary</u>.
- This can only be true if the rotational speed is equal to the forward speed of the vehicle.

$$v_{rotation} = \omega r$$
 (always true)

$$v_{translation} = \omega r$$
 (true if no slipping)

Rotation + Translation

 $v_{rotation} = \omega r$

Rotation

$$v_{rotation} = \omega r$$

Rotation + Translation

$$v_{translation} = 2\omega r$$

$$v_{translation} = \omega r$$

Translation

 $v_{translation} = v_{rotation}$

 $v_{translation} = 0$

Rank from smallest to largest angular velocity.

A train engine has a wheel diameter of 36" and travels at 40 mph.

A Beetle has a tire diameter of 20" and travels at 65 mph.

A monster truck has a tire diameter of 66" and travels at 20 mph.

Part 2: Moment of inertia

mass of m large radius

mass of m (same) small radius

Part 2: Moment of inertia

mass of m large radius small ω

mass of m (same) small radius large ω

Part 2: Moment of inertia

 When there are no external influences causing a change in speed (no torques), then we can say that the following quantity is conserved

$$L = I\omega$$

where *I* is the moment of inertia (like mass).

Part 2: moment of inertia

Hoop or cylindrical shell $I = MR^2$

Disk or solid cylinder $I = \frac{1}{2}MR^2$

Disk or solid cylinder (axis at rim) $I = \frac{3}{2}MR^2$

Long thin rod (axis through midpoint) $I = \frac{1}{12}ML^2$

Long thin rod (axis at one end) $I = \frac{1}{3}ML^2$

Hollow sphere $I = \frac{2}{3}MR^2$

Solid sphere $I = \frac{2}{5}MR^2$

Solid sphere (axis at rim) $I = \frac{7}{5}MR^2$

Solid plate (axis through center, in plane of plate) $I = \frac{1}{12}ML^2$

Solid plate (axis perpendicular to plane of plate) $I = \frac{1}{12}M(L^2 + W^2)$

Part 2: parallel axis theorem

We can consider an object rotating about an axis that is **not** through its center
of mass. To do so, we use the following formula:

$$I = I_{CM} + MD^2$$

where D is the distance from the center of mass to the new rotation axis.

For example: I_{CM} for a wheel is $\frac{1}{2}MR^2$. If we shift the rotation to the edge, that is a distance of D=R from the center so we have:

$$I_{wheel,edge} = \frac{1}{2}MR^2 + MR^2 = \frac{3}{2}MR^2$$