

Wheels and moment of inertia

Fundamental definition

- Rotation (for this class) will consider motion on a circular path where the speeds may be changing in time.
- Can measure angular position in three different units:

1 revolution = $360^\circ = 2\pi$ radians

▪ Fundamental relationship for a circle:

$$
\begin{array}{c}\n\mathbf{S} = \theta r \\
\mathbf{S} = 2\pi \mathbf{V} \mathbf{S} = 2\pi r = \mathbf{V} \\
\mathbf{
$$

Linear to rotational conversions

■ We can convert between linear and rotational quantities using the following definitions:

Distance & angle: $s = \theta r$

Velocity & angular velocity: $v = \omega r$

Acceleration & angular acceleration: $a = ar$

Introduction

Linear equations $x = x_0 + v_0 t + \frac{1}{2} a t^2$

 $v = v_0 + at$

 $x = x_0 + \frac{1}{2}(v_0+v)t$

 $v^2 = v_0^2 + 2a(x - x_0)$

Rotational equations $\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$

 $\omega = \omega_0 + \alpha t$

 $\theta = \theta_0 + \frac{1}{2}(\omega_0 + \omega)t$

 $\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$

. If wheels rotate, how is is it that we were able to use static friction when considering how cars accelerate or decelerate?

- **If wheels rotate, how is is it that we were** able to use static friction when considering how cars accelerate or decelerate?
- . Rolling without slipping means that the point of contact at the road is stationary.
- **This can only be true if the rotational** speed is equal to the forward speed of the vehicle.

 $v_{rotation} = \omega r$

(always true)

(true if no slipping) $v_{translation} = \omega r$

Rotation + Translation

Rank from smallest to largest angular velocity.

A train engine has a wheel diameter of 36" and travels at 40 mph.

A Beetle has a tire diameter of 20" and travels at 65 mph.

A monster truck has a tire diameter of 66" and travels at 20 mph.

Part 2: Moment of inertia

mass of m large radius mass of m (same) small radius

WSAUCE

Part 2: Moment of inertia

mass of m large radius small $\boldsymbol{\omega}$

mass of m (same) small radius large $\boldsymbol{\omega}$

WSAUCE

Part 2: Moment of inertia

■ When there are no external influences causing a change in speed (no torques), then we can say that the following quantity is conserved

 $L = I\omega$

where *I* is the moment of inertia (like mass).

Part 2: moment of inertia

Hoop or cylindrical shell
 $I = MR^2$

Disk or solid cylinder $I=\frac{1}{2}MR^2$

Disk or solid cylinder (axis at rim) $I = \frac{3}{2}MR^2$

Long thin rod (axis through midpoint) $I = \frac{1}{12}ML^2$

Long thin rod (axis at one end) $I=\frac{1}{3}ML^2$

Hollow sphere $I=\frac{2}{3}MR^2$

Solid sphere
 $I = \frac{2}{5}MR^2$

Solid sphere (axis at rim) $I = \frac{7}{5}MR^2$

Solid plate (axis through center, in plane of plate) $I = \frac{1}{12}ML^2$

Solid plate (axis perpendicular to plane of plate) $I = \frac{1}{12}M(L^2 + W^2)$

Part 2: parallel axis theorem

■ We can consider an object rotating about an axis that is **not** through its center of mass. To do so, we use the following formula:

$$
I = I_{CM} + MD^2
$$

where D is the distance from the center of mass to the new rotation axis.

For example: I_{CM} for a wheel is $\frac{1}{2}MR^2$. If we shift the rotation to the edge, that is a distance of $D=\overline{R}$ from the center so we have:

$$
I_{wheel,edge} = \frac{1}{2}MR^2 + MR^2 = \frac{3}{2}MR^2
$$