Force analysis, part 5

General problem solving strategy

- 1. Draw a picture
- 2. List knowns and unknowns (especially for kinematic problems)
- 3. For force analysis free body diagram and components
- 4. Develop a strategy for solving for the unknown

Tips for using Newton's 2^{nd l}aw:

- 1. Identify all of the forces present in the system
- 2. Choose the best coordinate system
- 3. Represent the force vectors in the coordinate system
- 4. Analyze Newton's 2nd law separately for each direction

 Take m₁ = 2.00 kg and m₂ = 10.0 kg, and consider the pulley to be frictionless.

Solve for the following: (a) T_1 (b) T_2 (c) T_3

 Take m₁ = 2.00 kg and m₂ = 10.0 kg. Consider friction on the horizontal surface with μ_s=0.60 and μ_k=0.25, and take the pulley to be frictionless.

The system starts at rest.

Solve for the acceleration of the system.

• Take $m_1 = 2.00$ kg and $m_2 = 10.0$ kg. Consider friction on the horizontal surface with $\mu_s = 0.60$ and $\mu_k = 0.25$, and take the pulley to be frictionless.

 The hanging mass is now pulled to give it an initial downward speed of 0.5 m/s.

Solve for the acceleration of the system.

Take m=5.0 kg and k = 620 kg/s².
What is the displacement of the mass from the spring's equilibrium point (along the y axis)?

Provide your answer in units of cm with two significant digits.

 Take m=5 kg, k = 620 kg/s² and the slope angle θ=25°. Assume the slope is frictionless.

What is the displacement of the mass from the spring's equilibrium point (along the x axis)?

Provide your answer in units of cm with two significant digits.