

The work-energy theorem, part 3

Units for energy

The SI unit of energy is the Joule (J).

1 Joule = 1 Newton \cdot meter

A common unit of energy in chemistry is the calorie (cal).

1 calorie = 4.184 J

A common unit of energy in food science is the Calorie = 1 kcal

1 Calorie = 4184 J

The work-energy theorem

This statement is similar to Newton's 2nd law of motion:

$$K_f - K_i = W_{tot}$$

$$K = \frac{1}{2}mv^{2}$$

$$W_{tot} = W_{1} + W_{2} + \dots$$

$$W_{1} = \vec{F}_{1} \cdot \Delta \vec{r}$$

A review of the dot product

- We can multiply two vectors with the dot product to get a scalar (a number).
- There are two ways that we can express the dot product:

$$|\vec{A} \cdot \vec{B}| = |\vec{A}| |\vec{B}| \cos(\theta)$$

$$= A_x B_x + A_y B_y$$

$$|\vec{B}|$$

 Which one of these equations is most useful depends on what information you are given.

A woman pulls a crate at an angle $\boldsymbol{\theta}$ above the horizontal

• What is the work done as she pulls the crate a distance d across the floor with force F at angle θ?

Work from non-constant forces

 The spring force is variable and depends on how much it is stretched or compressed.

$$\vec{F}_{spring} = -kx \, (\hat{x})$$

The work done by a spring force depends on whether the spring is giving or absorbing kinetic energy from an object:

$$W_{spring} = \pm \frac{1}{2} k x^2$$

We use the + sign when a spring starts compressed and causes an object to speed up, and we use the – sign when it starts uncompressed and then compresses to slow an object down.

Work from non-constant forces

• What is the work done by the spring as it stops a mass (m) moving with initial speed v_i?

Power

Power measures the rate at which work is being done.

$$P = \frac{W}{t} = Fv$$

The SI unit of power is the Watt (abbreviated as W, which is not the same thing as work).

$$1 \text{ Watt} = 1 \frac{\text{Joule}}{\text{second}}$$

1 horsepower (hp) =
$$745.7 \text{ W}$$