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Creating a model for population interactions

• Basic concepts:
1. Fish population (PF):

1. There is some maximum fish population that the oceans can support.
2. The more fish people eat, the fewer fish there are.
3. The fish population regenerates on some characteristic time scale (a fish generation).

2. Human fisher-people population (PH):
1. People need to eat fish to survive and reproduce.
2. The growth of the human population depends on how many people there are, and 

also how many fish they can harvest.
3. The population grows on some characteristic time scale (a human generation).



Building a simple model first

• Let’s begin with a simpler idea first:
• How do we model something simple, like a single bacterial population, in which 

there is an unlimited food supply and each bacteria lives forever?

• Each bacteria grows and then divides into two bacteria over a 
generational time scale.

• We start with an initial bacteria population of      .

• After one generation the population doubles to                  .

• After another generation the population again doubles, giving                                .

• In general, the nth generation will have a population of                      .
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Building a simple model first

• This is what we call “geometric” growth. It is very similar to 
exponential growth.

• In fact, we can put this growth equation in exponential form. 

• To do so we use the natural logarithm:

• Exponentiating we have: 

• This allows us to reformulate our population model using the 
exponential function:
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Building a simple model first

• We might want to consider what happens as we “zoom out” to large 
times and consider a continuous variation of the population in time.

• To do so, we note that the time at generation n is                 where ! is 
the time associated with one generation.

• Flipping that relation around we have: 

• The continuous population model is:
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Building a simple model first

• We can identify the effective time scale 
for exponential growth as:

• For example, if a bacteria population 
doubles once per hour, then we have
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What happens if the dividing is increased?

• What happens if instead of splitting into two bacteria after each 
generation a different process were to happen where the bacteria 
spits into three new bacteria?



What happens if the dividing is increased?

• What happens if instead of splitting into two bacteria after each 
generation a different process were to happen where the bacteria 
spits into three new bacteria?
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What happens if the dividing is increased?

• What happens if instead of splitting into two bacteria after each 
generation a different process were to happen where the bacteria 
spits into three new bacteria?

• Using the same conditions as in the previous example, we have

!"## =
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ln(3)

!"## =
60 minutes

1.10 ≈ 55 minutes
The solution is still an exponential, 
the only difference being that the 
time scale for growth is reduced, as 
we anticipated.
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A limited bacterial growth model

• How do we model growth when there is some kind of limit on the 
total population?



A limited bacterial growth model

• How do we model growth when there is some kind of limit on the 
total population?

• We can find the differential equation describing the population 
growth by taking a derivative:
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A limited bacterial growth model

• How do we model growth when there is some kind of limit on the 
total population?

• We can find the differential equation describing the population 
growth by taking a derivative:

• This last equation tells us that unlimited exponential growth occurs 
when the rate of change of population is proportional to the 
population.
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A limited bacterial growth model
• If we want to impose a limit on the population growth, we can go in 

and tinker with the growth equation.
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A limited bacterial growth model
• If we want to impose a limit on the population growth, we can go in 

and tinker with the growth equation.

• There are an infinite number of functions we could use, but we might 
choose something simple:
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A limited bacterial growth model
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A limited bacterial growth model
• If we want to impose a limit on the population growth, we can go in 

and tinker with the growth equation.

• There are an infinite number of functions we could use, but we might 
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A limited bacterial growth model
• If we want to impose a limit on the population growth, we can go in 

and tinker with the growth equation.

• There are an infinite number of functions we could use, but we might 
choose something simple:
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!"## = 87 minutes

./01 = 200 million

.6 = 1 million ./01

unlimited 
growth model

limited 
growth model

A limited bacterial growth model

• We can integrate the differential equation on the previous page to 
solve for the population as a function of time.
• Let’s consider a limited growth model the following parameters:



Modeling a predator-prey system

• We almost have all of the elements in place to consider the fate of 
the fish and the fisher-people. We just need to model the interaction 
between the populations.

• We really need to add only one thing, which is that the fish 
population is reduced when people catch fish.



Modeling a predator-prey system

• We almost have all of the elements in place to consider the fate of 
the fish and the fisher-people. We just need to model the interaction 
between the populations.

• We really need to add only one thing, which is that the fish 
population is reduced when people catch fish.

• Imagine that each person needs 3 fish per day to survive, then the 
loss of fish (per day) would be 3 times Phumans.
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The loss of fish is 
proportional to Phumans.
The constant R represents 
how many fish each person 
needs to survive.



The fish and fisher-people model

• We make a separate equation for each population:

• We note two things:
• Each population has its own generational time-scale.
• The human population equation does not have a second term on the RHS.
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One final detail…

• Whereas the maximum fish population is set by the capacity of the 
oceans, we need to ask what sets the maximum human population?

• Is there an absolute maximum?



One final detail…

• Whereas the maximum fish population is set by the capacity of the 
oceans, we need to ask what sets the maximum human population?

• Is there an absolute maximum?

• Maybe it makes more sense to say that the maximum human 
population is not fixed but that it varies, and at any time depends on 
the quantity of fish in the oceans at that time.

• We implement this with the following equation: !"#$%&'$%( = c !+,'"



Putting it together

• The next series of slides shows the resulting trends in population 
growth for the fish and the fisher-people for different model 
parameters.

• The solutions are integrated on a computer as there is not a simple 
solution as in the case of bacterial growth.

• The time scale for the integration is considered to be one year. Thus, 
if each person needs 3 fish per day, then we have R = 3 x 365 = 1095.



The successful population
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The hungry population
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The gluttons
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Long fish generation
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Intermediate fish generation
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An oscillating relationship with nature
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