
-*- coding: utf-8 -*-

"""

Created on Fri Feb 14 13:49:34 2020

For processing video data of moving pendula marked with yellow paint,

and extracting information about this motion.

@author: Scott

"""

#Import scipy for graphing, Image for image processing, and cv2 for

video->frame

from PIL import Image

import cv2

import matplotlib.pyplot as plt

import csv

#Set parameters:

vidname = "C:\\Users\\Scott\\Desktop\\CIMG0359.avi" #input video file

tempimgname = "C:\\Users\\Scott\\Desktop\\TempIMG.jpg" #location to store

images during processing

csvname = "C:\\Users\\Scott\\Desktop\\PendLocs.csv" #output location for

CSV file

threshold = 380 #R+G-B value to set yellow pixels; suggest 300-400

depending on light conditions. Test with writeBW

nummasses = 5 #Currently number of masses is hardcoded, and any extra

masses/masses moving out of frame will mess things up

masswidth = 60 #Approximate width of painted stripes in pixels (only

adjust if camera distance changes dramatically)

reportframes = 0 #Gives printout when this many frames are complete. Set

to 0 to disable printout.

minheight = 600 #Pixel value above which masses will not move; set

properly it increses run time and removes errors. Set to 0 to use entire

image.

#The list of center points for each mass, in nested array from,

initialized with no values.

centerpoints=[]

for i in range(nummasses):

 centerpoints.append([])

#A simple function to check if a given pixel meets the threshold (defined

above) for being "yellow"

#Returns True if the pixel is yellow, false otherwise; criteria is r + g

- b

def isYellow(pixelvals):

 if pixelvals[0]+pixelvals[1]-pixelvals[2]>threshold:

 return True

 else:

 return False

A function for testing, saving a processed image. Good for indicating

if the threshold for

isYellow() is working properly.

def writeBW(outputlocation, inputlocation):

 imageToConvert = Image.open(inputlocation)

 bw = Image.new("1",imageToConvert.size,color=0)

 width, height = bw.size

 for i in range(width):

 for j in range(height):

 coordinate = i,j

 if isYellow(imageToConvert.getpixel(coordinate)):

 bw.putpixel(coordinate,1)

 bw.save(outputlocation)

LEGACY: row with max yellow is no longer used; finding mass positions

uses the entire image.

A function identifying the row of the image with the most yellow, to be

used for extracting

mass positions

def findMaxRow(image):

 totyel = 0

 maxrow = 0

 width, height = image.size

 for i in range(height):

 tempyel = 0

 for j in range(width):

 coordinate = (j,i)

 if isYellow(image.getpixel(coordinate)):

 tempyel = tempyel + 1

 if tempyel>totyel:

 totyel = tempyel

 maxrow = i

 return maxrow

LEGACY: Replaced with findPositions2 and findMassCenter.

A function locating the center of each stretch of yellow pixels in a

given image, in a given

row. This returns an array of pixel locations corresponding to these

centers.

def findPositions(image, row):

 startpoints = []

 endpoints = []

 centers = []

 width, height = image.size

 for i in range(width-1):

 coordinate1 = (i, row)

 coordinate2 = (i+1, row)

 if isYellow(image.getpixel(coordinate1))== False:

 if isYellow(image.getpixel(coordinate2)) == True:

 startpoints.append(i+1)

 else:

 if isYellow(image.getpixel(coordinate2)) == False:

 endpoints.append(i)

 for i in range(min(len(startpoints),nummasses)):

 centers.append(int((startpoints[i]+endpoints[i])/2))

 return centers

Moves across the image searching for yellow pixels, then calls

findMassCenter to

report the centers of each mass, returning a list of x-positions of

mass centers in the image

def findPositions2(image):

 centers = []

 width, height = image.size

 tempspot = -2*masswidth

 for i in range(width-1):

 for k in range(minheight, height-1):

 if (i-tempspot > 2* masswidth):

 if isYellow(image.getpixel((i,k)))==True:

 centers.append(findMassCenter(image,i))

 tempspot = i

 return centers

#Iterates through locations near a mass, finding the average x-value of

yellow pixels in that area.

def findMassCenter(image, xstart):

 width, height = image.size

 total = 0

 count = 0

 for i in range(max(xstart-masswidth*2,0),

min(xstart+masswidth*2,width-1)):

 for j in range(minheight,height-1):

 if isYellow(image.getpixel((i,j))) == True:

 total += i

 count += 1

 if count == 0:

 return 0

 return total/count

The main function: loads a video, and loops through each frame, finding

centers of masses.

These pixel locations are stored to the centerpoints array, and then

plotted and saved to a CSV.

Errors are reported if a frame does not provide the appropriate number

of mass locations.

try:

 video = cv2.VideoCapture(vidname)

 success, image = video.read()

 frame = 0

 while success:

 cv2.imwrite(tempimgname, image)

 image = Image.open(tempimgname)

 templocs = findPositions2(image)

 if len(templocs)> nummasses:

 print("Error: too many masses found. Frame:" + str(frame))

 if len(templocs) < nummasses:

 print("Error: too few masses found. Frame:" + str(frame))

 if len(templocs) == nummasses:

 for i in range(len(templocs)):

 centerpoints[i].append(templocs[i])

 if (reportframes != 0):

 if (frame % reportframes == 0):

 print("Frame " + str(frame) + " complete")

 frame +=1

 success, image = video.read()

 for i in range(len(centerpoints)):

 plt.plot(centerpoints[i])

 with open(csvname, "w") as csvfile:

 writer = csv.writer(csvfile)

 writer.writerows(centerpoints)

except IOError:

 print("Video read error")

 pass

