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I. Introduction 

The research conducted over the summer served to model a coupled pendula system with 

computer simulation. The program used was Python and within this program many useful 

programming techniques were utilized to help model the couple pendulum system. Once this 

system was modeled, a comparison could be made between the coupled pendula and a quantum 

mechanical system using similar mathematical equations. In the end, a comparison of amplitude 

versus frequency was made and will be provided in a subsequent section. In the sections that 

follow I will be discussing the physical system being modeled, the overall structure of my 

Python script, making a comparison between integrator techniques including reasons behind a 

time varying damping parameter, and will provide a resonance curve displaying amplitude 

versus frequency of a mass.  

 

II.  The Physical System 

 This section will serve to provide an explanation of the physical system that is being 

modelled as well as provide a discussion of Newton’s laws and how the force equation comes 

about. The physical system that we are using to model quantum mechanical phenomena is a 

coupled pendulum. Our system currently consists of 22 masses of mass m(with 2 additional 

dummy masses), connected in series via hooks with springs of spring constant κsp, and are 

attached also by hook and fishing line to a pivot point P. Plastic blocks were constructed for the 

purpose of having the capability to change the effective pendulum length L as well as have all 

pendula oscillate in the same plane. Each mass in the system was separated equally in distance. 

The system is represented, in part, in figure 1.    

 
Figure 1: The Physical System 

The oscillator that we have chosen to drive the system has a power of 0.5hp. The driver 

effectively drives the 0th pendulum at various frequencies. Once this pendulum is displaced, the 

force provided by the driven is then transferred down the line of masses until it reaches a 

potential well. 

To describe the force acting on the system, Newton’s second law is used at various points 

in time. The equation that was used to analyze the system is shown below in (1).   
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This equation is just a different form of Newton’s second law with the ΣF term on the left-hand 

side of the equation and the sum of the forces acting on the system on the right side. The left-

hand side is looking at the ith mass where Δ is the displacement of the mass in the horizontal 

direction. Taking the second derivative of Δ provides us with an acceleration of the mass (ma). 

The first term on the right-hand side of the equation is caused by the force of gravity. It uses the 

small angle approximation for sin(θ) to be θ. Then, θ is equal to Δi /Li, where Li is the pendulum 

length. The other term on the right-hand side of the equation comes about because of the 

presence of the spring. The term is basically saying that the force on the system from the spring 

depends on the position of the observed mass, Δi, as well as the masses before and after that 
mass, Δi+1 and Δi-1. The variable ksp is the spring constant for each of the springs attached to the 

masses. 

 

III.  Discussion of Python Script Structure/Functions 

 This section will serve to provide information regarding the structure as well as the 

reasoning behind the structure of my Python script. The script consisted of seven functions, each 

with the purpose of simplifying the complex script to specific functions and only calling them 

when needed. In other words, to run the simulation, not every line of code was necessary which 

ultimately decreased the amount of time needed to run the simulation. Calling specific functions 

within the script made running the simulations quicker and easier organize runs. The first 

function in the script, after proper imports were completed, was calc(). Within calc, proper 

parameters were defined as well as the dimensional arrays that are being used to observe the 

coupled pendula system. Once these conditions for the pendula were set, there is a loop that 

defines the damping constant that will be present in our system. This damping constant was set 

to change over time (which will be discussed formally in IV.) and therefore looping this variable 

over time was necessary. Once the time varying damping coefficient was determined, conditions 

for initial position and frequency of the oscillator were defined. Position as well as velocity were 

defined as time varying quantities. Once position and velocity were defined, two functions of 

coupled differential equations were defined, and later used for the Runge-Kutta integration (this 

will be discussed in IV.). After the two functions were defined, the Runge-Kutta integration was 

run, effectively able to track the movements of all the masses through the course of the 

simulation. Within the Runge-Kutta integrator, there were two loops, the first to track time and 

the second to track each of the masses. Once the integration was completed, time, position, 

velocity, damping, mass, and effective pendulum length were returned. 

The second function in the script was called write(). This function had inputs of time, 

position, velocity, damping coefficient, mass and effective pendulum length. Also, a variable 

called file was input into the function for the purpose of easily writing simulations into data files, 

which would later be read from the file. The reason behind this function was to be able to write 

simulations done in calc() to data files and not have to re-run the same simulation multiple times. 

This function made it easy to manage each simulation conducted and to be able to access the file 

whenever necessary.  

The third function of the script was called read(). The data file in which one of the 

simulations was stored was an input to this function. Basically, the write() function wrote the 

simulation into a file, which is then accessed by read(). This function takes the data that was 

stored in write() and provides it to the user for the purpose of using it to determine the conditions 



of the simulation. Once the data is accessed from the file, it is returned at the end of the function 

to be used for other functions, which in this case was to determine the maximum amplitude.  

To find the maximum amplitude of a mass during the simulation, a separate function 

called amp() was created. This function had inputs of time, position, ts(starting time), and 

te(ending time). The purpose of having inputs ts and te was to have a very general function 

which could easily be edited to find the maximum amplitude found in the simulation at different 

times. The maximum amplitude function was made separate from calc() because it is much less 

time consuming and it keeps the script very organized. The plots provided in V. were taken with 

the start time at 550 seconds and end time of 600 seconds. Within this function there were if 

statements that allowed the function to run if no initial or final conditions were provided. 

 The fifth function in this program was called plot(). Similar to amp(), inputs to this 

function included time, position, ts, and te. However, two additional variables also had to be 

included in this function, which were velocity and mass number. This function used the same 

concept as amp() with no specifications needed for ts and te. This function provided plots of 

position versus time as well as velocity versus time. In doing so, the mass being plotted had to be 

specified when running the function. The results of running this function for position versus time 

as well as velocity versus time of the 5th mass is provided in V. 

 The sixth function in this program is called calc1(). This function has inputs of position, 

velocity, mass number, and effective pendulum length. This function provides an energy 

calculation for the system as a function of time. This function contains a loop that passes through 

time and an additional loop that passes though mass number. As the function runs, sequential 

values for kinetic and potential energy are found which is why the inputs mentioned previously 

(position, velocity) are provided. Once this function has run, the energy of a specific mass is 

returned. The last function in the script is called plot(). This function takes inputs of time and 

energy (found in calc1) and plots the energy of a mass versus time. Within this function time can 

be varied to plot the energy of a mass at any time throughout the simulation. 

 

IV.  A comparison of Integrator Techniques 

In analyzing the pendula system different integrator techniques were investigated. An 

integrator is used for the simulation because it finds the best analytic solution for sines and 

cosines present in a system that contains wave motion. All integrators have error associated with 

them, so it is very important to use one with the smallest error. There is not one integration 

technique that is effective for all problems, so multiple different techniques need to be compared 

to find the most accurate representation. Initially, implicit and explicit integrator techniques were 

used in the simulation to model the system. However, both techniques were not found to be an 

effective representation of the system because of the large propagation of error associated with 

them. Each simulation that was run would get less and less accurate to the actual system that was 

being analyzed as time went on. So, a Runge-Kutta integrator eventually was used for the 

simulation because of its ability to “cancel” the error associated with each timestep. In contrast to 

the implicit and explicit techniques, the 4th order Runge-Kutta integrator effectively takes an 

additional timestep in between the defined timesteps in the program. In doing so, the error is 

“averaged” and a good approximation for what is happening in between timesteps is found. 

Within the integrator, a time dependent damping constant was defined.  

A.  Damping Parameter 

 The damping parameter used in the simulation was analytically determined and was 

defined to change over time. It was necessary to have a time dependent damping parameter 



because at low enough damping, it was found that the system did not reach equilibrium. The 

system that we are using has a natural damping constant of 0.001. When the simulation was run 

with an initial damping parameter equal to that naturally found within the system, equilibrium 

was not reached for up to 1000 seconds. So, for the system to display harmonic motion, the 

damping parameter was set to initially be 0.01 and eventually decay to 0.001. Over the course of 

approximately 400 seconds, the system would reach simple harmonic motion with a damping 

coefficient of 0.001(the systems natural damping coefficient) and the analysis can be conducted. 

V.  Results 

 The main purpose of running the simulation was to acquire a graph that compares the 

amplitude of the masses versus the frequency of oscillation. However, this section also serves to 

provide a graph of displacement as well as velocity versus time of a mass(5th). The plot for 

displacement versus time of the fifth mass at a frequency of 1 Hz is provided below in figure 2. 

 
 
Figure 2: Plot of Amplitude vs Time of the 5th mass 

Figure 2 provides a graph of driven amplitude versus time(blue) as well as mass amplitude 

versus time(orange) of the 5th mass from 550 to 600 seconds. As evidenced by the figure, the 

driver amplitude was set at 0.1 meters and the amplitude of oscillation of the mass is shown to be 

approximately 0.01 meters. A time varying damping parameter, a spring constant ksp, and 

effective pendulum length L were included in the calculation and are provided at the top of the 

graph. Figure 3 displays a graph of velocity versus time of the same mass at the same driving 

frequency. 



 
Figure 3: Plot of Velocity vs Time of the 5th mass 

As shown in figure 3, the drivers’ velocity(blue) is approximately 0.63 m/s, with a corresponding 

mass velocity(orange) of 0.05 m/s. This graph provides evidence of damping in the system 

because the mass amplitude and velocity are much less than that of the driver. A graph of 

amplitude versus frequency was also obtained from the simulations.  

 
Figure 4: Plot of Amplitude vs Frequency  

In figure 4, the maximum amplitude of the coupled pendula system is compared to the frequency 

at which the driver was oscillating. This plot is representative of a resonance curve with spikes in 

amplitude at 0.7Hz and 1.3Hz. The spikes in the system appear to go to about 4.5m and 0.9m 

which is much higher than that of the driver (0.1m). Therefore, this graph doesn’t represent what 

is present in the system, but instead shows the frequencies at which the system naturally 

oscillates(resonance). Figure 4 was then magnified to see how the system acts when it is not at 

resonant frequencies.  



 
Figure 5: Plot of Amplitude vs Frequency Magnified 

The figure shown above serves to provide information on the system before and after resonant 

frequencies. It is evident from the plot that the system naturally progresses in amplitude to larger 

values until resonance is reached. However, right before resonance is reached, amplitude oddly 

declines approximately 0.1m. This phenomenon is not typical for a resonance curve and should 

be investigated further by taking more timesteps in between 0.5 Hz and 0.7 Hz. 

VI.  Conclusion and Future Work 

We have been able to build an apparatus of coupled pendula that can display wave 

motion which will eventually be used to model quantum mechanical phenomena. A comparison 

between this system and Newton’s second law was completed. A discussion of the structure of 

the script as well as each of the functions within the script was described. Also, an analysis of 

integrator techniques was completed and a final graph showing the relationship between the 

amplitude and frequency was provided in the results. Future research opportunities involve a 

further analysis and simulation of the resonance curve provided in Section 5. Specifically, how 

the system is not acting in the traditional sense, moreover, why the system decays in amplitude 

just before resonance is found. Further research can hope to more closely analyze the system and 

how it relates to quantum mechanical phenomena. Also, finding the wavelength in the system as 

it relates to frequency as well as the phase difference between the driver and the masses can be 

determined in future analysis. Hopefully, a paper describing the research conducted with this 

system can be completed in the upcoming year. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5

A
m

p
lit

u
d

e 
(m

)

Frequency(Hz)

Amplitude vs Frequency



Appendix 

import numpy as np 

import matplotlib.pyplot as plt 

#import sys 

import h5py  

 

#import pandas as pd 

 

location ="dataFolder/data.csv" 

 

def calc():         #This function serves to run the entire simulation. It contains many of the 

                          #arrays we are looking at to model our system. The simulation itself uses 

                          #a Runge-Kutta integrator to approximate how the system is acting while 

                          #minimizing propagation of error. 

     

    #data = pd.read_csv("dataFolder/data.csv") 

     

    #print(data.x) 

     

    #data.x=[1,2,3] 

     

    #print(data.x) 

     

    #data.to_csv("dataFolder/data.csv") 

    # system parameters 

    g = 9.81 

    k = 17.5 

    pi = 3.14159 

    v0 = 600 

    v0y = v0 * np.sin(pi/180) 

     

    # More parameters 

    t0 = 0 

    tf = 1000 

    h = 0.001 

     

    # steps 

    n = 600000 

    nmass = 22 

     

    # variables 

    t = np.arange(n) * h 

    x = np.zeros((n,nmass+2)) 

    v = np.zeros((n,nmass+2)) 

    m = np.full(nmass+2,0.995) 

    l = np.full(nmass+2,2.20345) 



    b = np.empty((n,nmass+2)) 

    #b = np.full((n,nmass+2), 0.1) 

    k1 = np.zeros(nmass+2) 

    r1 = np.zeros(nmass+2) 

    k2 = np.zeros(nmass+2) 

    r2 = np.zeros(nmass+2) 

    k3 = np.zeros(nmass+2) 

    r3 = np.zeros(nmass+2) 

    k4 = np.zeros(nmass+2) 

    r4 = np.zeros(nmass+2) 

 

    alpha = -g/l  

     

         

    #b decrease over time 

    for i in range(0,n): 

        beta = (-0.099 * (np.exp((0.04 * t[i]) - 10))) / (np.exp((0.04 * t[i]) - 10) + 1) + 0.100 

         

 

        b[i,:] = beta 

    print(b)        

    

    #sys.exit() 

    #b.fill(beta) 

       

     

    # initial conditions 

    x[0,1:nmass-1] = 0 

     

 

      

    omega0 = 1.4 * np.pi 

    x[:,0] = 0.1 * np.sin(omega0 * t) 

    v[:,0] = - 0.1 * omega0 * np.cos(omega0 * t) 

    print(x[:,0]) 

    exit 

     

    v[0,1:nmass-1] = 0 

     

     

     

    # functions from the 2 coupled DE's 

    def f1(t , x , v, b, j): 

        return v[j] 

    def f2(t , x , v, b, j): 

        return -g / l[j] * x[j] + (k/m[j]) * (x[j + 1] + x[j - 1] - 2 * x[j]) - b[j] * v[j]  



 

    # Runge Kutta 

    for i in range(0,n-1): 

         

        if i % 1000 == 0: 

            print(i) 

        for j in range (1,nmass+1): 

            k1[j] = f1(t[i], x[i,:], v[i,:], b[i,:], j) 

            r1[j] = f2(t[i], x[i,:], v[i,:], b[i,:], j) 

        for j in range (1,nmass+1): 

            k2[j] = f1(t[i] + h/2, x[i,:] + (k1/2) * h, v[i,:] + (r1/2) * h, b[i,:], j) 

            r2[j] = f2(t[i] + h/2, x[i,:] + (k1/2) * h, v[i,:] + (r1/2) * h, b[i,:], j) 

        for j in range (1,nmass+1): 

            k3[j] = f1(t[i] + h/2, x[i,:] + (k2/2) * h, v[i,:] + (r2/2) * h, b[i,:], j) 

            r3[j] = f2(t[i] + h/2, x[i,:] + (k2/2) * h, v[i,:] + (r2/2) * h, b[i,:], j) 

        for j in range (1,nmass+1): 

            k4[j] = f1(t[i] + h, x[i,:] + k3 * h, v[i,:] + r3 * h, b[i,:], j) 

            r4[j] = f2(t[i] + h, x[i,:] + k3 * h, v[i,:] + r3 * h, b[i,:], j) 

             

    #iterative solution 

        for j in range (1,nmass+1):  

            x[i+1,j] = x[i,j] + (k1[j] + 2 * k2[j] + 2 * k3[j] + k4[j]) * h/6 

            v[i+1,j] = v[i,j] + (r1[j] + 2 * r2[j] + 2 * r3[j] + r4[j]) * h/6 

    return t, x, v, b, m, l 

 

def write(t, x, v, b, m, l, file):    #This function uses the information calculated in def calc 

                                                    #and writes it to a file. This makes it easier to keep 

                                                    #track of each of the  

                                                    #simulations because they are now stored somewhere. 

    hf = h5py.File(file, 'w') 

    hf.create_dataset('time1', data=t) 

    hf.create_dataset('displacement1', data=x) 

    hf.create_dataset('velocity1', data=v) 

    hf.create_dataset('damping1', data=b) 

    hf.create_dataset('mass1', data=m) 

    hf.create_dataset('length1', data=l) 

    hf.close() 

    #t,x,v,b,m,l = calc() 

    #T=list(t) 

    #X=list(x) 

     

     

    #dataStored= pd.DataFrame( {'t': T,'x' : X}) 

     

    #print(dataStored) 

    



    #dataStored.to_csv(location) 

     

     

def read(file):                         #This function now takes the information that was stored in 

                                                #read and returns it to be used in calculations to be done 

                                                #with that information. 

    hf = h5py.File(file, 'r') 

    

    t1 = hf.get('time1') 

    t1=np.array(t1) 

     

    x1 = hf.get('displacement1') 

    x1=np.array(x1) 

     

    v1 = hf.get('velocity1') 

    v1=np.array(v1) 

     

    b1 = hf.get('damping1') 

    b1=np.array(b1) 

     

    m1 = hf.get('mass1') 

    m1=np.array(m1) 

     

    l1 = hf.get('length1') 

    l1=np.array(l1) 

 

    hf.close() 

    return t1,x1,v1,b1,m1,l1 

 

def amp(t, x, ts=400, te=None): #This function finds the maximum amplitude of the  

                                                    #oscillation at any time we want to look at.  

    if ts is None: 

        ts = t[0] 

    if te is None: 

        te = t[-1]   

    nmass = np.shape(x)[1] - 2   

    #amp = np.zeros(nmass) 

     

    m1 = 1  

    m2 = nmass + 1 

    ind1 = np.where(t == ts)[0][0] 

    ind2 = np.where(t == te)[0][0] 

    z = np.max(np.abs(x[ind1:ind2,m1:m2])) 

     

    #for i in range (ind1,ind2): 

        #amp[i] = np.max(x[i]) 



     

    return z 

 

 

def plot(t, x, v, j, ts=550, te=None):      #This provides a plot of both the displacement 

# versus time as well as the velocity versus time.                                                  

#This function also has the ability to look 

                                                              #at whatever times one would want. 

    #for i in range(0,n-1) 

    if ts is None: 

        ts = t[0] 

    if te is None: 

        te = t[-1] 

    

    plt.figure() 

    plt.plot(t,x[:,0]) 

    plt.plot(t,x[:,j]) 

    plt.xlim(ts,te) 

    plt.xlabel('Time(s)') 

    plt.ylabel('Displacement(m)') 

    #plt.ylim(-.1,.1) 

    plt.title('Displacement vs Time\nb=0.01, k=17.5, l=2.20345, omega=2pi') 

     

    plt.figure() 

    plt.plot(t,v[:,0]) 

    plt.plot(t,v[:,j]) 

    plt.xlim(ts,te) 

    plt.ylim(-1,1) 

    plt.xlabel('Time(s)') 

    plt.ylabel('Velocity(m/s)') 

    plt.title('Velocity vs Time\nb=0.01, k=17.5, l=2.20345, omega=2pi') 

 

 

#Energy 

def calc1(x,v,m,l):  #This function is able to do an energy calculation for the system.  

                                #This keeps track of kinetic and potential energy and returns 

                                #their respective values to be used later. 

     

    g = 9.81 

     

    n = np.shape(x)[0] 

    nmass = np.shape(x)[1] - 2 

    #Arrays 

    e = np.zeros(n) 

     

    # Energy Calculation 



    for i in range(0,n): 

        u = 0 

        ke = 0 

        for j in range (1,nmass+1): 

            ke += (1/2) * m[j] * v[i,j]**2 

            u +=  m[j] * g * l[j] * (1 - np.sqrt(1-(x[i,j]/l[j])**2))  

        e[i] = ke + u 

     

    return e 

 

         

def plot1(t, e):            #This function plots the enegy of the system as a function of time. 

         

    tstart = 0 

    tend = 20 

    plt.figure() 

    plt.plot(t,e) 

    plt.plot(t,e) 

    plt.xlim(tstart,tend) 

    plt.ylim(0,0.05) 
 


