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What is Tunneling?

vConsider a particle with an energy, E and a potential hill with potential, V. 
Classically, if E<V then the particle cannot overcome this barrier and will never 
roll to the other side. If E>V then the particle has enough energy to overcome 
the potential energy (V) at the top of the hill and will roll to the other side.

vThis is not always true in quantum mechanics.

Classically, electrons 
must climb the 

potenCal hill to appear 
on the other side



What is Tunneling?

vIn quantum mechanics, the particle can escape, despite its energy E being 
below the potential well, there is a probability of escape. 

Quantum Mechanics 
allows an electron with 

less energy then 
required to overcome 

the potential, to tunnel 
through the barrier…

and appear on the 
other side, with 

energy, E



Using a continuous coupled pendulum to study wave 
dispersion and tunneling

vOne way of doing this is through physical system which demonstrates wave mo7on 
with components we can control. 

vSo we will consider a coupled pendulum system.

vObviously, this is something hard to grasp, and much harder to teach. Thus, 
experiments to demonstrate this concept is important for conceptual understanding. 



Dispersion

vDispersion occurs when waves of different 
wavelengths have different propaga6on 
veloci6es. 

vSo, a wave packet of mixed wavelengths 
tends to spread out in space.

ØA wave packet is also referred to as an 
envelope of waves propaga6ng.  

Non-dispersive wave 
packet

Dispersive wave packet



Finding a Dispersion 
Relation

Consider a coupled 
pendulum experiment

m1 = m2

!"!# =



Newton’s 2nd Law: For A Simple Pendulum

Mass 1

!"#$%
"&# = ! ̈$% = −!* sin .%

Using the small angle approximation for large l:
! ̈$% = −!* $%/

Mass 2

!"#$#
"&# = ! ̈$# = −!* sin .#

By same approximation:
! ̈$# = −!* $#/



Newtons 2nd Continued

Assuming our system obeys Hooke’s law, the force exerted by the spring acts in the opposite 
direction of the displacement. This gives us the following equations of motion.

! ̈#$ = −!' #$( + κ #+ − #$
∴ ̈#$ = −'( #$ +

κ
! #+ − #$

And

! ̈#+ = −!' #+( − κ #+ − #$
∴ ̈#+ = −'( #+ −

κ
! #+ − #$



Newtons 2nd Con,nued

Combine the equations of motion to define the motion for pendula moving in identical phase with no relative 
change in position.

̈"#+ ̈"$ = −'
( "# + "$ → ̈"+ = −'

( "+

By observation we see that we can write the solution as a cos function. Also note that 

,
- = ω/

∴ ̈"+ = ω$/"+

∴ "+ = 1# cos ω/5 + φ#

Where A and φ are a set of initial or boundary conditions.



Newtons 2nd Con,nued

• Now, we combine the equa1ons of mo1on to show the pendula separa1ng or coming 
together.

̈"#− ̈"% = "# − "% −'( −
2κ
+ → ̈"- = − '

( +
2κ
+ "-

By observa1on we see that ω = 0
1 +

%2
3

And the solu1on to the above differen1al equa1on is similar to the previous solu1on for SHM.



General Solution

Our final general solution is

! = #$ cos ω)* + φ$ + #- cos ω* + φ-



Dispersion Relation

Taking the previous result

ω" = $
% +

2κ
)

And recognizing that 
ω*" =

$
%

We can write that
ω" = ω*" + 2

κ
)

This is the angular 
frequency of a mass on a 

spring



Dispersion Equation Cont.

Using the wave speed rela1on
! = #λ

And 
ω = 2π#

And the wavenumber rela1on

( = 2π
λ

We can rewrite our dispersion equa1on as

ω) = *+) + 2()!)



Phase and Group Veloci2es 

vPhase Velocity (vp): The speed of a single sinusoidal traveling wave

vGroup Velocity (vg) : The velocity at which a whole envelope of waves 
propagate

vObserving the relation between these velocities and wave dispersion are 
essential in discussing tunneling.



Phase and Group Velocities 

To derive, we can take two harmonic waves with close angular frequencies, k values, and of the same amplitude.

! ", $ = &'() ω+$ − -+" + &'()(ω0$ − -0")

Note: cos & + cos5 = 2'() 789
0 cos 7:9

0

Which allows us to re-write as

2& cos ω0 − ω+
2 $ − -0 − -+2 " cos ω0 + ω+

2 $ − -0 + -+2 "

This is the net amplitude



Phase Velocity

Take the second cosine in the previous summed wave equation

cos ω% + ω'
2 ) − +% + +'2 ,

To find the phase velocity, we want to find the condition such that -+x-.ωt is constant with respect 
to time. 

-+x−.ωt = 0123)42)

⇒ 6,
6) =

ω
+ = 78



Group Velocity

We can obtain vg by keeping the amplitude constant

∆ω
2 $ − ∆&2 ' = )*+,$-+$ ⇒ ∆ω

∆& $ − ' = )*+,$-+$

Now we can see the rate of propaga:on of our envelope as a func:on of :me.

/0 =
ω1 − ω2
&1 − &2

= 3ω
3&



Phase and Group Velocity

!" =
ω
%

!& =
ω' − ω)
%' − %)

= *ω
*%



Phase Velocity for Coupled Pendula

ω" = ω$" + 2'"("

ω"
'" =

ω$"
'" + 2(" = ($"

($ =
ω$"
'" + 2("

And replacing with k we get 

($ =
2 ∗ ( ∗ ω
ω" − ω$" When wp > w, vp

becomes imaginary



Group Velocity for Con1nuous Pendula

!" =
$ω
$&

!" =
$ω
$& ω'( + 2&(!( = 2&!(

ω = 2!(
!'

!" =
2!(

ω'(
&( + 2!(

Now we can plug in k to get everything in terms of v, ω, and ωp. 

!" =
! 2

ω 1
ω( − ω'( When wp > w, vg

becomes imaginary



Solu%ons for vg and vp
Ve

lo
cit

y 
(m

/s
)

Angular Frequency of Pendula (s-1)

Phase velocity, vp

Group velocity, vg

SoluBon 
becomes 
imaginary

ω

!" ≈ !$



Imaginary Solu.on

vHow to interpret an imaginary solution?

vPhysically, the wave makes it through the region where ω < ωp, much like 
the case of a particle tunneling through a potential barrier in quantum 
mechanics. 



Coupled Pendulum System

vHow to create this effect? 

vWe can shorten the string length of a single pendula

vIncreasing ωp such that ωp> ω results imaginary solution



Importance of a model

vThere are a lack of models and demonstra1ons to show tunneling effects. 

vMathema1cally, the result is contrary to the physical occurrence. 

vSimilar comparison to tunneling in quantum mechanics.



Experimentation

A spring-coupled pendulum system similar to what is described here 
has been build at SUNY Cortland

However, data has not been taken to demonstrate the tunneling 
phenomenon.


