
Coupled Pendulum Image Processing
Scott Blankenbaker
Edlund Lab, SUNY Cortland
Spring 2020

The coupled pendulum experiment is being performed to provide a visually intuitive backing for a
complex mathematical system, with applications outside of classical mechanics. This report presents
Python code used to track the locations of the pendula used in this experiment. The code requires a
physical setup with yellow paint marking the center of each mass and a camera viewing the coupled
pendula in front view; both dimensions of the pendula’s arcs should be visible to the camera. The
distance from the camera to the pendula is not critical; the code supports any number of pendula in the
field of view, with good performance at five pendula.

The central piece of this analysis is identifying yellow pixels. Pixels are assigned a value based on the
formula R + G – B, with R, G, and B the red, green, and blue values assigned to the pixel. This allows for
an easy contrast of yellow objects without requiring highly specific lighting or background conditions.
The values are compared against a user-specified threshold, which should be tested and adjusted when
the experiment’s environment changes. Good results have been obtained using a threshold value of 380
with the lab’s artificial lighting; natural lighting should be avoided due to its less stable brightness. If
more reliable yellow detection is desired, the simplest solution will be applying a black background.

Testing for this contrast value is done using the “writeBW” function, which converts one still image into
an image with all yellow pixels colored white and all nonyellow pixels colored black. When setting a new
yellow threshold value, at least one image from the sequence should be tested using this function; the
only spots visible in the written image should be the yellow marks on each mass. This function should be
called in the console, and requires only input and output locations.

Figure 1: Comparison of base image with black-and-white yellow identification image. This is good
contrast and will produce usable data.

With the appropriate threshold value set, two approaches were taken for finding the centers of masses.
The first was to find the image row with the most yellow pixels and locate the start and end of each
streak of yellow pixels in this row. While the pendula movement is approximately along one horizontal
line, this approach is simply less reliable, as it uses too few pixels and runs into errors too easily when
physical issues are present – for instance, uneven painting of the yellow markers. This approached used
the “findMaxRow” and “findPositions” functions, which are included for completeness but are not used.

The second approach, including the “findPositions2” and “findMassCenter” functions, uses all yellow
pixel clusters in the image, giving much more reliable results. The image – which can be restricted to
below a certain height for speed, using the “minheight” parameter – is searched for a yellow pixel. The
“findMassCenter” function then draws a box with width four times the set parameter “masswidth”,
horizontally centered on the first found pixel, and takes the average x-position of every yellow pixel
within this box. This reliably captures the average position of yellow pixels, an appropriate proxy for the
position of the mass. It does require that the distances between masses be large compared to the width
of the paint strips; the current physical setup of the pendula makes this a reasonable assumption. Once
this mass position has been recorded, the code shifts past the mass, based on the “masswidth”
parameter, and begins searching for the next mass. The center of each mass is stored and reported to
the main function.

The main function primarily handles input and output. The “cv2” package is used to handle the video,
and the “Image” package is used for image processing. The main function loads the video, then saves
one frame of the video as an image file. It then processes that image, finding the center locations of
each mass in that frame. If the number of masses detected does not equal the number of masses
specified, an error is reported and the frame is ignored. Otherwise the mass locations are stored, and
the process is applied to the next frame. Progress can be reported by setting the “reportframes”
parameter, which will generate a message when a certain number of frames are completed. Once the
video has finished processing, a graph of the mass locations by frame is reported. The position data is
kept in the “centerpoint” list of lists, with each list within “centerpoint” containing the location of that
indexed mass for each frame. These values are saved in CSV format to a location specified by the
“csvname” parameter, for future processing.

Figure 2: Sample extracted position data for mass movements. Smooth movement is seen, and
qualitative comparison to the video seems reliable. Note the symmetry between mass movements away
from the central mass. This data was note taken during stable pendulum oscillation.

This code seems reliable and useful for tracking mass positions over time. The yellow identification is
effective, and the best way to further improve its reliability would be a physical change to the
experimental device; simply putting up black paper behind the masses should solve any difficulties in the
future. The major issue with the code at present is the time it takes to run; if videos can be converted to
a series of still images, some minor tweaks to the main function should allow much faster throughput –
though I’m uncertain if there will be a net gain in performance when including the cost of doing the
conversions upfront. Any desired data processing could be appended to this code, but it is likely to be
easier to import the CSV into another program.

For future users of the code, I believe the comments should be sufficient. All changeable parameters are
included in the list of “set parameters” at the beginning of the program; no changes to any other code
are required to use the program as it currently operates.

-*- coding: utf-8 -*-

"""

Created on Fri Feb 14 13:49:34 2020

For processing video data of moving pendula marked with yellow paint,

and extracting information about this motion.

@author: Scott

"""

#Import scipy for graphing, Image for image processing, and cv2 for

video->frame

from PIL import Image

import cv2

import matplotlib.pyplot as plt

import csv

#Set parameters:

vidname = "C:\\Users\\Scott\\Desktop\\CIMG0359.avi" #input video file

tempimgname = "C:\\Users\\Scott\\Desktop\\TempIMG.jpg" #location to store

images during processing

csvname = "C:\\Users\\Scott\\Desktop\\PendLocs.csv" #output location for

CSV file

threshold = 380 #R+G-B value to set yellow pixels; suggest 300-400

depending on light conditions. Test with writeBW

nummasses = 5 #Currently number of masses is hardcoded, and any extra

masses/masses moving out of frame will mess things up

masswidth = 60 #Approximate width of painted stripes in pixels (only

adjust if camera distance changes dramatically)

reportframes = 0 #Gives printout when this many frames are complete. Set

to 0 to disable printout.

minheight = 600 #Pixel value above which masses will not move; set

properly it increses run time and removes errors. Set to 0 to use entire

image.

#The list of center points for each mass, in nested array from,

initialized with no values.

centerpoints=[]

for i in range(nummasses):

 centerpoints.append([])

#A simple function to check if a given pixel meets the threshold (defined

above) for being "yellow"

#Returns True if the pixel is yellow, false otherwise; criteria is r + g

- b

def isYellow(pixelvals):

 if pixelvals[0]+pixelvals[1]-pixelvals[2]>threshold:

 return True

 else:

 return False

A function for testing, saving a processed image. Good for indicating

if the threshold for

isYellow() is working properly.

def writeBW(outputlocation, inputlocation):

 imageToConvert = Image.open(inputlocation)

 bw = Image.new("1",imageToConvert.size,color=0)

 width, height = bw.size

 for i in range(width):

 for j in range(height):

 coordinate = i,j

 if isYellow(imageToConvert.getpixel(coordinate)):

 bw.putpixel(coordinate,1)

 bw.save(outputlocation)

LEGACY: row with max yellow is no longer used; finding mass positions

uses the entire image.

A function identifying the row of the image with the most yellow, to be

used for extracting

mass positions

def findMaxRow(image):

 totyel = 0

 maxrow = 0

 width, height = image.size

 for i in range(height):

 tempyel = 0

 for j in range(width):

 coordinate = (j,i)

 if isYellow(image.getpixel(coordinate)):

 tempyel = tempyel + 1

 if tempyel>totyel:

 totyel = tempyel

 maxrow = i

 return maxrow

LEGACY: Replaced with findPositions2 and findMassCenter.

A function locating the center of each stretch of yellow pixels in a

given image, in a given

row. This returns an array of pixel locations corresponding to these

centers.

def findPositions(image, row):

 startpoints = []

 endpoints = []

 centers = []

 width, height = image.size

 for i in range(width-1):

 coordinate1 = (i, row)

 coordinate2 = (i+1, row)

 if isYellow(image.getpixel(coordinate1))== False:

 if isYellow(image.getpixel(coordinate2)) == True:

 startpoints.append(i+1)

 else:

 if isYellow(image.getpixel(coordinate2)) == False:

 endpoints.append(i)

 for i in range(min(len(startpoints),nummasses)):

 centers.append(int((startpoints[i]+endpoints[i])/2))

 return centers

Moves across the image searching for yellow pixels, then calls

findMassCenter to

report the centers of each mass, returning a list of x-positions of

mass centers in the image

def findPositions2(image):

 centers = []

 width, height = image.size

 tempspot = -2*masswidth

 for i in range(width-1):

 for k in range(minheight, height-1):

 if (i-tempspot > 2* masswidth):

 if isYellow(image.getpixel((i,k)))==True:

 centers.append(findMassCenter(image,i))

 tempspot = i

 return centers

#Iterates through locations near a mass, finding the average x-value of

yellow pixels in that area.

def findMassCenter(image, xstart):

 width, height = image.size

 total = 0

 count = 0

 for i in range(max(xstart-masswidth*2,0),

min(xstart+masswidth*2,width-1)):

 for j in range(minheight,height-1):

 if isYellow(image.getpixel((i,j))) == True:

 total += i

 count += 1

 if count == 0:

 return 0

 return total/count

The main function: loads a video, and loops through each frame, finding

centers of masses.

These pixel locations are stored to the centerpoints array, and then

plotted and saved to a CSV.

Errors are reported if a frame does not provide the appropriate number

of mass locations.

try:

 video = cv2.VideoCapture(vidname)

 success, image = video.read()

 frame = 0

 while success:

 cv2.imwrite(tempimgname, image)

 image = Image.open(tempimgname)

 templocs = findPositions2(image)

 if len(templocs)> nummasses:

 print("Error: too many masses found. Frame:" + str(frame))

 if len(templocs) < nummasses:

 print("Error: too few masses found. Frame:" + str(frame))

 if len(templocs) == nummasses:

 for i in range(len(templocs)):

 centerpoints[i].append(templocs[i])

 if (reportframes != 0):

 if (frame % reportframes == 0):

 print("Frame " + str(frame) + " complete")

 frame +=1

 success, image = video.read()

 for i in range(len(centerpoints)):

 plt.plot(centerpoints[i])

 with open(csvname, "w") as csvfile:

 writer = csv.writer(csvfile)

 writer.writerows(centerpoints)

except IOError:

 print("Video read error")

 pass

	Blankenbaker-final-report
	PedulumVisionCode

