

1

J. Plasma Phys. (2021), *vol.* 87, 905870314 © The Author(s), 2021. Published by Cambridge University Press This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/S0022377821000635

Phase contrast imaging measurements and numerical simulations of turbulent density fluctuations in gas-fuelled ECRH discharges in Wendelstein 7-X

J.-P. Bähner ¹, †, J.A. Alcusón ¹, S.K. Hansen ², A. von Stechow ¹, O. Grulke^{1,3}, T. Windisch¹, H.M. Smith¹, Z. Huang², E.M. Edlund⁴,
M. Porkolab², M.N.A. Beurskens¹, S.A. Bozhenkov ¹, O.P. Ford ¹, L. Vanó¹, A. Langenberg ¹, N. Pablant ⁵, G.G. Plunk ¹, A. Bañón Navarro ⁶, F. Jenko ⁶ and The W7-X Team¹

¹Max Planck Institute for Plasma Physics, 17491 Greifswald, Germany
 ²MIT Plasma Science and Fusion Center, Cambridge, MA 02139, USA
 ³Technical University of Denmark, 2800 Kengens Lyngby, Denmark
 ⁴SUNY Cortland, Cortland, NY 13045, USA
 ⁵Princeton Plasma Physics Laboratory, Princeton, NJ 08540, USA
 ⁶Max Planck Institute for Plasma Physics, 85748 Garching, Germany

(Received 15 March 2021; revised 26 May 2021; accepted 28 May 2021)

The fundamental nature of turbulent density fluctuations in standard Wendelstein 7-X (W7-X) stellarator discharges is investigated experimentally via phase contrast imaging (PCI) in combination with gyrokinetic simulations with the code GENE. We find that density fluctuations are ion-temperature-gradient-driven and radially localised in the outer half of the plasma. It is shown that the line-integrated PCI measurements cover the right range of wavenumbers and a favourable toroidal and poloidal location to capture some of the strongest density fluctuations in W7-X. Due to the radial localisation of fluctuations, measured wavenumber–frequency spectra exhibit a dominant phase velocity, which can be related to the $E \times B$ rotation velocity at the radial position of a well in the neoclassical radial electric field. The match is robust against variations of heating power and line-integrated density, which is partly due to the localisation of fluctuations and partly due to effects of the radial gradient in the $E \times B$ velocity profile on the wavenumber–frequency spectrum. The latter effect is studied with a newly built synthetic PCI diagnostic and global gyrokinetic simulations with GENE-3D.

Key words: fusion plasma

1. Introduction

The Wendelstein 7-X (W7-X) stellarator is optimised for reduced neoclassical transport (Beidler *et al.* 1990). Results from the first operation phase with an island divertor strongly

†Email address for correspondence: jan-peter.baehner@ipp.mpg.de

Downloaded from https://www.cambridge.org/core. SUNY Cortland Memorial Library, on 03 Sep 2021 at 20:19:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377821000635