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1 Basic theoretical principles of electro-optic
modulators

Electro-optic modulators rely on birefringence, which is the optical property
of a material having a refractive index that depends on the polarization and
propagation direction of light; such anisotropy may be caused by mechanical
stresses, electric fields or be intrinsic to the material itself due to its crystalline
structure as in the case of calcite.

The impermeability of a general material, η, is defined as

η ≡ ε0
ε

=
1

n2
(1)

which makes its variation with the index of refraction, n, equal to

δη =
dη

dn
δn = − 2

n30
δn. (2)

The index of refraction is generally a complicated function of a number of pa-
rameters; however, it is usual practice to consider the electric field, E, and
mechanical stresses, σ, to dominate the response. Taking advantage of the fact
the variation of the index of refraction is usually very small, the functional
dependence of the permeability on electric field and mechanical stress can be
expanded in a MacLaurin series as

ηij(E, σ) = ηij(0, 0) + rijkEk + sijklEkEl + pijklσkσl (3)

with

rijk =
∂ηij
∂Ek

∣∣∣∣
E=0

sijkl =
∂2ηij
∂Ek∂El

∣∣∣∣
E=0

(4)

pijkl =
∂2ηij
∂σk∂σl

∣∣∣∣
σ=0

where a sum over repeated indices is assumed. The tensors r and s, which
model the response to the applied electric field, are, respectively, the Pockel
and the Kerr coefficients; the tensor p models the response to the mechanical
stress σ, known as the elasto-optic effect. When the applied electric field and
stress tensor are oscillatory in time at sufficient large frequency, as in the case
of a modulator considered in this report, p is usually negligible and will not be
considered in the following.
By using transpose symmetry and the Shwartz theorem on the order of partial
derivatives we can write

rijk = rjik sijkl = sijlk sijkl = sjikl (5)

leading to a simplification of the representation of the elements; for example,
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the tensor r reduces to the following 6 elements

r1k = r11k

r2k = r22k

r3k = r33k

r4k = r23k = r32k

r5k = r13k = r31k

r6k = r12k = r21k;

similar relations hold for the s and the η tensors.
For any cartesian coordinate system the equation of the indicatrix has the

general form

1

n21
x2 +

1

n22
y2 +

1

n23
z2 + 2

1

n24
yz + 2

1

n25
xz + 2

1

n26
xy = 1. (6)

Let us now consider a generic electric field

~E = Exx̂+ Ey ŷ + Ez ẑ (7)

applied to the crystal; eq.3 can be used to calculate the modified indicatrix as
follows (

1

n21
+ δ

1

n21

)
x2 +

(
1

n22
+ δ

1

n22

)
y2 +

(
1

n23
+ δ

1

n23

)
z2 +

2

(
1

n24
+ δ

1

n24

)
yz + 2

(
1

n25
+ δ

1

n25

)
xz + 2

(
1

n2
+ δ

1

n26

)
xy = 1 (8)

where

δ
1

n2i
= rijEj + sijkEjEk (9)

Let us now focus on birifringent crystals having favourable properties with
light at 10.6 µm, such as CdTe or GaAs. Such crystals belong to the symme-
try group 4̄3m, for which symmetry considerations make the two electro-optic
tensors read [1]:

r =


0 0 0
0 0 0
0 0 0
r41 0 0
0 r52 0
0 0 r63



s =


s11 s12 s12 0 0 0
s12 s11 s12 0 0 0
s12 s12 s11 0 0 0
0 0 0 s44 0 0
0 0 0 0 s55 0
0 0 0 0 0 s66


with r41 = r52 = r63 = r41 and s44 = s55 = s66 = s44[2].
While all crystals show the Kerr effect, not all of them show the Pockel effect.
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If a crystal shows the Pockel’s effect, this generally dominates over the Kerr
effect.

Let us now consider a crystal cut along its coordinate axis, i.e. [100],[010],[001],
and that the applied field is directed along one of these directions; other con-
figurations can be studied in a similar way but the numerical coefficients will
obviously be different. In the case the applied electric field is along the x di-
rection, and the Kerr coefficients are neglected, the modified indicatrix reduces
to

x2 + y2 + z2

n20
+ 2r41Exyz = 1 (10)

where the refractive index is not separated into ordinary and extraordinary
components as the crystal is isotropic. Equation 10 can be written without
cross products in a new principal system as

x′2

n2x′
+
y′2

n2y′
+
z′2

n2z′
= 1 (11)

so that x′ = x; it is convenient to eliminate the cross product by applying a
rotation around the x̂ axis

y = y′ cos(θ)− z′ sin(θ)

z = y′ sin(θ) + z′ cos(θ) (12)

which transform the indicatrix equation into

x′2

n20
+

[y′ cos(θ)− z′ sin(θ)]2

n20
+

[y′ sin(θ) + z′ cos(θ)]′2

n20
+

2r41Ex[y′ cos(θ)− z′ sin(θ)][(y′ sin(θ) + z′ cos(θ)] = 1. (13)

The cross-term y′ − z′ vanishes identically with a rotation angle θ = π/4, for
which the indicatrix becomes

x′2

n20
+

(
1

n20
+ r41Ex

)
y′2 +

(
1

n20
− r41Ex

)
z′2 = 1; (14)

therefore, in the new principal system, the refraction index is equal to

nx′ = n0

ny′ ' n0

(
1− 1

2
n20r41Ex

)
(15)

nz′ ' n0

(
1 +

1

2
n20r41Ex

)
.

Let us now consider an amplitude modulator composed of two linear polar-
izers rotated by 90 degrees with respect to each other, and a crystal in between
them subject to an electric field along the x̂ direction (see Figure 1).

The electro-magnetic wave enters the crystal with the following polarization

~E = E0

√
2

2
(x̂+ ŷ)e−ıωt (16)
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Figure 1: Sketch of the amplitude modulator

which corresponds to θ = π/4 in Fig.1. If the crystal has dimensions (d, d, L),
after the wave has propagated through its length L the electric field reads

~E = E0

√
2

2

[
x̂+ ŷ · exp

(
−ı1

2
k0Ln

3
0r41Ex

)]
eın0k0Le−ıωt, (17)

which shows that the applied electric field induces a phase difference, 2δ, between
the x and y components equal to

2δ =
1

2
k0Ln

3
0r41Ex. (18)

The wave electric field at the exit face of the crystal, discarding isotropic phase
factors, can therefore be written as

~E = E0

√
2

2

(
x̂e−ıδ + ŷe+ıδ

)
(19)

which, after projection onto the exit polarizer oriented along n̂ = (x̂, ŷ), becomes

~E = ıE0 sin(δ)~n (20)

which translates into a beam intensity equal to

I = I0 sin(δ)2. (21)

In order to achieve the desired modulation, one possibility would to bias the
crystal at Vπ/2, i.e. 2δ = π/2 which gives I/I0=0.5, and modulate as close as
possible to δ = ±π/4; the required voltage would then be equal to

2
π

4
=

1

2
k0Ln

3
0r41

Vπ/2

d
=⇒ Vπ/2 =

λ0d

2n30r41L
. (22)
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Alternatively, the intensity modulation can be made linear in sin(δ) by applying
a quarter wave plate between the two polarizers, so that

I = I0 sin(δ + π/4)2 =
1 + sin 2δ

2
(23)

without any DC biasing voltage. For an on-off modulation 2δ needs to be equal
to π/2, which gives

π

2
=

1

2
k0Ln

3
0r41

Von−off
d

(24)

or

Von−off =
λ0d

2n30r41L
(25)

Since the modulator considered in this report will have to operate with light
at 10.6 µm wavelength, the choice of birefringent crystals is restricted to those
which do not significantly attenuate light at such wavelength. Suitable materials
are CdTe, ZnSe, GaAs and ZnTe which belong to the crystallograhic group
4̄3m; numerical values of electro-optic coefficients and refraction indices of such
crystals are taken from [4] and reported in Tab.1.

Material r41 n0 r41n
3
0 ρ

Unit [10−12 m/V] [] [10−12 m/V] [108 Ωcm]

CdTe 6.8 2.60 120 1
GaAs 1.51 3.30 54 10
ZnSe 2.2 2.39 30 104

ZnTe 3.9 2.7 78 n.a.

Table 1: Electro-optic coefficient and refraction index measured with 10.6 µm
wavelength light for materials belonging to the symmetry group 43m. The last
column indicates the undoped electrical reistivity.

For CdTe of dimensions [5,5,50] mm (quote from II-VI 261092) at λ0 = 10.64
µm, n30r41 = 1.2 · 10−10 m/V , so that the required voltage is equal to 4433 V.
Note that this value corresponds to a wave amplitude; its the peak-to-peak and
rms values would be twice and half that value, respectively.

Let us now consider a more arbitrary cut, for which the light does not nec-
essarily propagate along one of the crystallographic axes. For a 4̄3m crystal, for
which nx = ny = nz = n0, the indicatrix reads

x2 + y2 + z2

n20
+ 2r41(Exyz + Eyxz + Ezxy) = 1; (26)

the index of refraction in the principal coordinate system are found by diago-
nalizing the matrix 

1
n2
0

r41Ez r41Ey

r41Ez
1
n2
0

r41Ex

r41Ey r41Ex
1
n2
0


By cutting and orienting the crystal in the way sketched in figure 2, which
corresponds to having:

• the electrode surfaces along (11̄0)

5



• the side surfaces along (001)

• the optical surfaces along (110)

we obtain that ±Ex = ∓Ey = ±E0/
√

2 and Ez=0, which makes the eigen-
values equal to (n−20 + r41E0, n

−2
0 − r41E0, n

−2
0 ). By assuming again that the

perturbation to the refraction index is much smaller than one, by Taylor ex-
panding to first order we obtains

nx′ =
n0√

n20 + r41E0

' n0 −
n30r41E0

2

ny′ =
n0√

n20 − r41E0

' n0 +
n30r41E0

2
(27)

nz′ = n0

and the directions of the normal modes are along

x̂′ =
x̂− ŷ +

√
2ẑ

2

ŷ′ =
−x̂+ ŷ +

√
2ẑ

2
(28)

ẑ′ =
x̂+ ŷ√

2
.

When the probing electric field is polarized along the vertical direction in figure
2, Eq.17 becomes

~E = E0

√
2

2

[
x̂exp

(
−ı1

2
k0Ln

3
0r41E0

)
− ŷexp

(
ı
1

2
k0Ln

3
0r41E0

)]
eın0k0Le−ıωt

(29)
and the phase difference between the x̂ and ŷ components becomes equal to

2δ = k0n
3
0Lr41E0 (30)

which halves the quarter-wave (on-off) voltage, bringing it down to about 1760
V. Table 2 reports all on-off voltages required for the crystals listed in Table 1.

Material Von−off [V]

CdTe 2217
GaAs 4926
ZnSe 8867
ZnTe 3410

Table 2: On-off voltages for materials in Table 1 with the electric field in the
110 direction and light polarized along the 001 plane.

Another feasible crystal cut would be such that the biasing electric field is
in the 111 direction, with the maximum phase shift equal to

2δ =

√
3πL

λd
n30r41V (31)

which is a factor 2/
√

3 less than that given by Eq.30.
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Figure 2: Top view of the crystal in the crystallographic reference frame. The
crystal will be cut along the planes (110, 11̄0, 001), 001 being the horizontal
plane. The laser beam would be polarized along the 001 direction.

2 Transit time limitation

If the length of the crystal and the modulation frequency are such that the tran-
sit time of the light was equal to the inverse of the modulation frequency, then
there would not be any net power modulation as the phase shifts experienced
at the beginning of the crystal would cancel those at the end.
The transit time of light in a crystal of length L and refraction index n is

τ =
Ln

c
, (32)

for this to be negligible compared to the modulation frequency fm, the latter
should be such that fmτ � 1. As the modulation frequency increases and
becomes comparable to the transit time, the modulator does not respond adi-
abatically anymore to the time varying index of refraction. Let us write the
phase retardation as [3]

2δ = aLE (33)

where L is the length of the crystal, E the intensity of the electric field, and a
a factor that takes into account the geometry of the system. When the tran-
sit timeaffects the overall modulation depth, the elementary phase retardation
along the crystal is given by

d(2δ) = aE(x)dx (34)

where x is the coordinate along the direction of propagation and assumes values
between 0 and L. The system is such that light is at x = L at time t and at
x = 0 at time t− τ , which makes

x =
c

n
(tx − t+ τ). (35)
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Assuming E = E0 cos(2πfmt+φ), the total phase retardation is therefore equal
to

2δ =

∫ L

0

dxE(x) = E0
c

n

∫ t

t−τ
dt cos(2πfmt+ φ)

= E0
c

n2πfm

[
cos
(

2π
(
t− τ

2
+ φ

))
sin

(
2πτ

2

)]
(36)

Comparing equations 33 and 36 we see that the transit time will reduce the
efficacy of the modulator by a factor ρ

ρ =
sin
(

2πfmτ
2

)
2πfmτ

2

. (37)

Typical modulation frequencies of interest for this report are ten of MHz for
detection of Ion Cyclotron Emission, one half GHz for detection of the Helicon
way as it is being designed for the DIII-D tokamak, and a few GHz for detection
of the Lower Hybrid wave. Considering a CdTe crystal of length L = 50 mm, the
reduction of the efficiency of the modulator is equal to 99.9%, 92.4% and 19.8%,
respectively, for the three frequencies above; second order differences are found
for the other crystals considered in this report. A traveling wave modulator is
therefore required only for frequencies that reach or exceed 1 GHz, as required
by detection of Lower Hybrid waves.

3 Higher order harmonics

The electro-optic cell produces an intensity modulation which, as seen in eq.
23, is a sinusoidal function of the phase shift, which is linear in the applied
voltage. In the case of a sinusoidally varying voltage, the intensity modulation
will feature higher order harmonics. Indeed, the Jacobi-Anger equation

eız cos θ =

∞∑
n=−∞

ınJn(z)eınθ (38)

can be used together with Euler’s formula to compute the harmonic expan-
sion of eq. 23

sin[z cos(θ)] ≡ eız cos(θ) − e−ız cos(θ)

2ı
=

∞∑
n=∞

ı2nJ2n+1(z)eı(2n+1)θ (39)

which shows that the strength of the n-th harmonic is the n-th order Bessel
function of the first kind, and that even harmonics do not contribute to the
signal. The argument of the Bessel function, z, is the maximum phase shift be-
tween the ordinary and the extraordinary components of the laser beam which,
for realistic parameters, is between zero, which corresponds to no applied volt-
age, and π/2, which corresponds to the on-off modulation depth. A quantitative
representation of the relative strengths of various harmonics compared to the
fundamental as a function of the modulation depth is given in fig.3. In particu-
lar, by imposing that the amplitude of the first spurious component, i.e. that at
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Figure 3: Amplitude of higher components, relative to that of the fundamental
frequency, in the intensity of the modulated beam as a function of the modula-
tion depth.

three times the fundamental frequency, in the intensity of the modulated beam
is at most one-hundredth of that at the fundamental frequency, we obtain that
the modulation depth cannot exceed 50%, or one-third the quarter-wave volt-
age. Higher components are well below one-thousandth for almost all possible
values of the modulation depth, and are therefore not expected to significantly
bias the heterodyne detection scheme.

While the presence of third and higher order harmonics does not represent
an appreciable issue for the detection of the Helicon or Lower Hybrid waves
due their large and fixed frequency, it does trouble the heterodyne detection of
broadband fluctuations such as Ion Cyclotron Emission (ICE ). Indeed, let us
assume that the Pockel cell is set to modulate at a frequency of 8 MHz; any
plasma wave oscillating around 24 MHz within the detector bandwidth will be
detected by the optical heterodyne scheme, therefore biasing the analysis. In
case a 100% modulation depth was required, e.g. for S/N considerations, one
remedy to the higher order harmonics would be to modulate the voltage with
a triangular waveform, so that an almost pure sinusoidal intensity modulation
would be obtained. A calculation similar to the one that generated fig.3 indi-
cates that the spectral contamination at all orders is less than one-thousands
at modulation depths larger than 98%. However, such scheme would produce
a spectral contamination higher than one-tenth at f = 3f0 for a modulation
depth less than 75%, or half the quarter-wave voltage.

4 Dielectric losses

In a purely capacitive component such as a Pockels cell, dielectric losses are the
primary cause of power dissipation in the system and, therefore, determine the
power to be provided by the RF driver as well as that to be removed by the
cooling system.

In order to determine the dielectric losses it is useful to very briefly review
the basic theory of the complex dielectric constant in materials. The simplest
model for the non relativistic dynamics of a bound electron under an external
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electric field E, can be expressed as

mr̈ = eE− kr−mγṙ (40)

where m is the electron mass, e its electric charge, k a spring-like force attracting
the electron to its nucleus and γ represents a viscous-type force that depends
linearly on the velocity of the electron. For the sake of simplicity we assume
the external field to be aligned along one of the axis of the reference frame, so
that the vector notation can be dropped and k be expressed as a constant. By
defining ω0 ≡

√
k/m we obtain

r̈ + γṙ + ω2
0r =

e

m
E, (41)

for which the following limits apply:

1. Dielectric: ω0 6= 0, γ 6= 0

2. Conductor: ω0 = 0, γ 6= 0

3. Collisionless plasma: ω0 = 0, γ = 0.

The form of eq. 41 implies that a sinusoidal electric field of the form E(t) =
E0e

ıωt would produce a similar time dependence for the displacement of the
electron, whose solution at any frequency ω is given by

r =
e

m

E

ω2
0 − ω2 + ıωγ

; (42)

this results in the polarization per unit volume to be equal to

P ≡ Np = Ner ≡ Ne2

m

E

ω2
0 − ω2 + ıωγ

≡ ε0ξ(ω)E (43)

with the displacement field, D, given by

D = ε0E + P = ε0(1 + ξ(ω)E = ε(ω)E. (44)

By defining the plasma frequency, ωp, as

ω2
p =

Ne2

ε0m
(45)

the effective permittivity can be expressed as

ε(ω) = ε0

[
1 +

ω2
p

ω2
0 − ω2 + ıγω

]
= ε′(ω)− ıε′′(ω), (46)

the real and the imaginary parts of which are referred to as the refractive
and absorbing parts, respectively. When ω ' ω0 the material goes through a
resonance, with the real part of the permittivity decreasing with ω and therefore
showing an anomalous dispersion, while the imaginary part of the permittiv-
ity shows a lorentzian behavior around ω0. Usually a material exhibits several
frequencies corresponding to a variety of vibrational modes, so that the permit-
tivity can be written as
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ε(ω) = ε0

[
1 +

M∑
i=1

ω2
p,i

ω2
i − ω2 + ıγiω

]
. (47)

A formal quantum mechanical treatment [10] leads to

ε(ω) = ε0

1 +
e2ε0
m

M∑
i=1,j>i

fji(Ni −Nj)
ω2
ji − ω2 + ıγiωji

 . (48)

where ωji ≡ (Ej − Ei)/~ is the transition frequency between energy levels
i and j, Ni is the population of the lower energy level Ei and Nj that of the
upper level Ej , and fji are called oscillator strengths. Lower energy states
are generally more populated, causing the material to behave as an absorbing
dielectric. However, in case of a population inversions, i.e. Ni < Nj , the
permittivity changes sign and the material shows a gain in the neighborhood of
the resonance.

In general, a given material shows both dielectric and conductive properties
at different frequencies, so that a simple model of its permittivity would then
be

ε(ω) = ε0

[
1 +

ω2
d,p

ω2
d,0 − ω2 + ıγdω

+
ω2
c,p

ıω(ıω + γc)

]
≡ εd(ω) +

σc(ω)

ıω
(49)

where subscripts d, c stand for dielectric and conductive, respectively; in
such case the Ampere’s law gives

Jtot = J +
∂D

∂t
= σc(ω)E + ıωεd(ω)E = ıωε(ω)E. (50)

The relative strength between the conduction and the displacement currents
determines whether the material behaves as a conductor or as a dielectric. By
separating the total permittivity into its real and its imaginary parts, the total
current reads

Jtot = ıωε(ω)E = ıωε′(ω)E + ε′′(ω)ωE (51)

and the Joule losses per unit volume can be written as

dPloss
dV

=
1

2
〈JE∗〉T =

1

2
ε′′(ω)ω|E|2 (52)

which shows that the losses are a linear function of the frequency.
Let us assume that, at least in the frequency range of interest, σc(ω) is

real-valued. It follows from eq. 49 that

ε′′(ω) = ε′′d(ω) +
σc(ω)

ω
(53)

and the ohmic losses can be written as

dPloss
dV

=
1

2
[ωε′′d(ω) + σc(ω)]|E|2. (54)
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It is convenient to characterize ohmic losses through a parameter called loss
tangent, which is defined by

tan θ ≡ ε′′(ω)

ε′(ω)
=
σc + ωε′′d(ω)

ωε′d(ω)
=

σc(ω)

ωε′d(ω)
+
ε′′d(ω)

ε′d(ω)
≡ tan(θc) + tan(θd). (55)

Ohmic losses can then be written in terms of the loss tangent parameter as

dPloss
dV

=
1

2
ωε′d(ω) tan(θ)|E|2. (56)

According to [11], at frequencies equal to 15.95 and 60 GHz, the loss tangent
for CdTe was measured to be 1.1 · 10−2 and 1.5 · 10−2, respectively; while the
dielectric constant was measured to be equal to 10.31 ± 0.08 and 10.39 ± 0.04
at 1 MHz and 15.95 GHz, respectively. Assuming that such values do not
significantly vary over frequency by going to the tens of MHz range, in our
CdTe crystal (5× 5× 50 mm3 subject to 1 kV oscillating at in the 10-20 MHz
frequency range) dielectric losses can be estimated to less than 1 W. Design
safety would estimate dielectric losses to a few watts, which is the power that
has to be provided by the RF driver and dissipated by the cooling system.
Dielectric losses for the Helicon wave are estimated by a simple extrapolation
of eq. 56 at the frequency of the Helicon wave, at fixed volume, to about 20 W.

5 Actual Cell

Even though CdTe provides the best performance and is therefore the first choice
crystal, only a few companies have the necessary equipment and certification to
legally handle it because of its inclusion in national and international toxicology
programs. Most of the companies that were contacted work only with ZnSe
or GaAs, no company offered ZnTe. An extensive vendor search identified II-
VI (USA), Gooch&Housego (UK) and Hyvel (USA) as potential providers of
a CdTe crystal along with a prototype housing, but were unable to provide a
suitable RF driver; the german company Qubig was identified as a provider of
a complete modulator composed of a number of resonant cavities that would
drive a GaAs crystal at various frequencies. Official quotes were obtained for the
CdTe cell from the three companies above, while subtle technicalities that are
beyond the scope of this report prevented QuBig from providing an official quote,
even though simulations indicated that a suitable modulation depth would be
achieved in the range of tens of MHz.

II-VI inc. was chosen as provide of the cell based their cost competitive
quote and on their history of reliability. The quote from Gooch&Housego was
rejected because it exceeded the budget available to this project, while that
from Hyvel because, besides being more expensive than that from II-VI, raised
concerns regarding the cooling system of the cell; indeed, instead of cooling ce-
ramic components in direct contact with the crystal, their design relied on an
a chamber filled with nitrogen gas to be used as an intermediate layer between
the water pipes and the crystal. While possibly minimizing the risk of creating
moisture, such design would have increased maintenance overhead as the quan-
tity of nitrogen gas would have had to be constantly monitored in order to avoid
damage to the crystal.
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After a few iteration with II-VI regarding the dimensions of the crystal, an
official quote for a water cooled Pockels cell was obtained. The size of the crystal
was a compromise between cost, which scales with size, clear aperture, which
is to be kept as large as possible for alignment issues, and cross-section, which
has to be minimized in order to lower the voltage required to drive the cell.
It was decided to order a crystal whose dimensions are 5 · 5 · 50 mm3, where
the longer dimension is along the light propagation. The crystal would be cut
along the Miller planes (110, 11̄0, 001), resulting in the configuration depicted
in Fig.4 Based on the design of the RF circuit that was being designed to drive

Figure 4: Cartoon representing the CdTe crystal and its Miller indexes compared
to the direction of propagation of the laser beam

the cell, it was decided to connect one of the two plates of the capacitor to
ground, as opposed to have both terminals floating. An MHV connector was
preferred over soldering pins for obvious practical reasons. Based on previous
work and literature, II-VI estimated the electrical resistance and capacitance
of the cell to about 100 MΩ and 10 pF which, at 25 and 476 MHz frequency,
translate into about 630 and 33 Ω impedance, respectively. Every crystal has a
breakdown voltage whose value depends on the ambient conditions in which the
crystal is, mainly temperature and pressure. For this reason II-VI did not quote
a breakdown voltage, even though they stated that the CdTe crystal should be
able to withstand 1 kV per millimeter; for the crystal of our choice, this limit
would translate into 5 kV. However, safety considerations would impose to lower
such limit by 20%, setting the final value to 4 kV. It should be noted that the
afore-mentioned breakdown limit was verified only at modulation frequencies of
200 kHz or less. The optical faces of the crystal will be coated for anti-reflection
at 10.6 µm wavelength only, the additional cost of depositing a double band AR
coating layer to accommodate a visible HeNe was deemed as not necessary.
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In view of the large investment in the crystal and the exploratory nature of
this work, a relatively inexpensive test crystal, made of ZnSe, was also ordered in
an identical housing. The two crystals have similar electrical properties, though
the ZnSe is less efficient at modulating the laser, so the ZnSe crystal will be
used to verify that the drivers deliver the appropriate high voltage at the design
frequency without causing breakdown in the crystal, while the CdTe crystal will
be used for physics studies.

The actual CdTe cell as built by II-VI is shown in figure 5. Its capacitance
was measured to be equal to 15 pF, its clear aperture is 4 mm and can be
operated with a laser beam impinging on the crystal with at 2 degrees; a picture
is displayed in fig.5.

Figure 5: Picture of the actual CdTe cell. The MHV connector can be seen
on the top, along with the entry and exit water pipes for active cooling. The
crystal is protected with lens tissue.

6 Modulation depth for Helicon

In this section we will review the expected signal to noise ratio in an heterodyne
phase contrast diagnostic, and derive the minimum modulation depth necessary
for the detection of the helicon wave; no such estimate can be made for ICE due
to the lack of theoretical prediction regarding the induced density perturbation.

Let us consider a heterodyne detection scheme based on a sinusoidal modu-
lation of the probing laser beam power. The time evolution of the intensity of
the laser beam can be written as

I(t) = αI0 + βI0 cos(ωmt) (57)
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where I0 is the unmodulated intensity, α is a positive correction factor that
accounts for losses in the modulator, β determines the modulation depth, and
ωm is the angular frequency of the modulation. It is understood that 0 ≤ α ≤
0.5, 0 ≤ β ≤ α as the intensity cannot be negative. Also, the modulation is
assumed to be homogeneous across the probing beam wavefront, so that spatial
coordinates can be omitted for simplicity. The non-fluctuating PCI signal will
have a DC component as well as a component oscillating at ωm, while the signal
scattered by plasma waves at frequency ω will appear at ω, its natural frequency,
and at ω ± ωm. When the modulating frequency is equal to tens, or hundreds,
of megahertz, the two sidebands are well spaced apart so that only one sideband
can usually be measured.
Let us now compute the S/N ratios of a single sideband heterodyne detection.
The voltage responsivity of the detector can be written as

Vs(t) = RAeĨ(t) (58)

where Ae is the area of the detector element, R the voltage responsivity, and Ĩ
the fluctuating intensity of the laser beam impinging on the detector. Equation
58 can be expressed as a function of the fluctuating phase of the probing beam
as [5]

Vs(t) = RAeT (∞)Wφ̃(t) (59)

where W and T account for the transfer function of the system.
Detector noise can be usually cast into two main form: shot-noise and intrinsic
noise, which incorporates the contributions from 1/f, Thermal Johnson and
Generation-Recombination processes. The former is a statistical noise due to
the quantum nature of light, while the latter is described by a parameter called
apparent detectivity, D∗, and is commonly used to characterize detectors. The
shot-noise in a photocnductive detector is given by [6]

V 2
LO = FdR

2Ae∆f
~ω0

η
I0 (60)

where η is the quantum efficiency of the detector, ∆f the bandwith and ω0 the
angular frequency of the incident radiation; Fd, a factor that takes into account
recombination effects, is equal to two for PC devices and unity for PV devices.
The rms value of the intrinsic noise is given by

V 2
intr =

R2Ae∆f

D∗2
. (61)

The signal to noise ratio can be calculated as

S/N =
V 2
s

V 2
LO + V 2

intr

=
Ae
∆f

[
T (∞)Wφ̃

]2
1
D∗2 + 2FdI0

~ω0

η

(62)

by computing the transfer function one can replace Eq.62 by

S/N =
4Ae
∆f

[
I0φ̃
]2

1
D∗2 + 2FdI0

~ω0

η

(63)

within 5% accuracy.
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Let us now estimate the change in the S/N ratio when we adopt a heterodyne
scheme, modeled by Eq.57, with single sideband detection. The signal drops by
a factor β/2, where the factor of two is due to the single sideband detection and
decreases the rms voltage by β2/4. The shot noise rms decreases by a factor
equal to α, while detector noise is unmodified. Since we forced the conditions
β ≤ α and α ≤ 1/2, the intensity out of the modulator is less, or at most
equal, to the intensity out of the laser. The S/N ratio in the heterodyne scheme
normalized to that in an homodyne one is equal to:

(S/N)het
(S/N)hom

=

{
β2

4 , if intrinsic noise dominates.
β2

4α , if shot noise dominates.
(64)

these two factors are plotted in Fig.6 and are limited to 1/8 and 1/16, respec-
tively, when α = β = 0.5, i.e. for a lossless modulator with 100% modulation
depth.

Figure 6: Reduction in S/N ratio from homodyne to heterodyne, single side-
band, detection scheme for a shot noise dominated (left) and an intrinsic noise
dominated case (right).

Let us now evaluate the requirements to detect the Helicon wave with the
PCI as installed on the DIII-D tokamak.
Based on two dimensional full wave AORSA modeling, the Helicon wave is
expected to produce a phase perturbation to the probing laser beam of the
order of 1–5 × 1015 m−2MW−1/2 [7] which, considering an antenna able to
couple 1 MW to the plasma, translates into a phase perturbation in the interval
0.03–0.15 mrad. Let us take the values in Tab.3 to set the parameters in Eq.63.

Detector Ae ∆f D∗ η
[mm2] [kHz] [cm ·Hz1/2/W] []

PC 0.5 300 3 · 1010 0.8
PV 0.16 300 109?? 0.02

Table 3: DIII-D PCI parameters to be used in Eq.63

The peak intensity of a gaussian beam of total power P , waist w at 1/e
points in electric field w is equal to I0 = 2P/(π/w2). By assuming P = 5 W,
w0 = 3.5 cm and M = 0.2, we obtain I0 = 6.5 W/cm2. The S/N ratios, in case
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the helicon wave will be detected a few hundreds of kHz away from its nominal
value, assume the following estimated values

(S/N)hom =

{
103–104 for the PC detector

102–103 for the PV detector
(65)

Let us assume that the heterodyne detection scheme needs to retain a S/N
ratio equal to, at least, 10; then, in the worst case of the PC detector, the impact
on the S/N ratio due to the heterodyne detection has to be less or equal to 100.
By looking at Eqs.23 and 57 we can set α = 0.5 and β = sin (2δ)/2. Assuming
that the detector will operate in a region somewhere in between the shot noise
and the intrinsic noise dominated regimes, we can assume that the reduction in
the S/N ratio will be an average of the two limits expressed in Eq.64, i.e. 3β2/8,
which gives β ' 0.16. This, in turns, means that 2δ ' 0.32 and the required
modulated voltage to be applied to the birefrengent crystal is about one-fifth of
the on-off voltage, i.e. about 360 V.

7 RF-Circuitry

The development of an RF circuitry for the helicon wave and for the detection
of fluctuations in a broadband region at lower frequency, such as ICE, generally
requires two different approaches. While the circuitry for the helicon wave can
be realized with some sort of resonant circuit at a fixed frequency, i.e. that
of the wave, ICE requires a circuitry able to make the Pockels cell oscillate at
various frequencies in a given range or, even better, continuously in a broadband
frequency region. Another difference between the two circuitries relies in the
dielectric losses; indeed, as derived in the sec. 4, the dielectric losses at the
ICE frequency range require the RF driver to provide a negligible amount of
power, while an RF circuit at the Helicon frequency would have to provide
approximately 20W, which is at the limit of low cost, broadband rf amplifiers
available in the market for less than 5000 $.

The voltage requirements for electro-optic cells considered in this white paper
are around 2 kV peak-peak, or 700 V rms. The equivalent circuit for a Pockels
cell can be described as a large resistor, which based on data reported in Tab.1
is estimated in about 20 MΩ, in parallel to a capacitor having a DC capacitance
of the order of 15 pF, which represent the capacitance of the crystal along
with that of its housing. The extremely large value of such resistor is such
that it is dominated by the equivalent resistor modeling the loss tangent which,
depending on the frequency, varies between 25 kΩ and 2 MΩ. At RF frequencies,
the capacitance of cables cannot be neglected and usually amounts to 100 pF/m
for 50Ω impedance cables; lower capacitance values can be obtained at higher
impedance. A schematic representation of the equivalent circuit is displayed in
fig. 7.

In view of considerations expressed in sec. 3, the design voltage should
be approximately 1 kV amplitude without any DC offset, resulting in voltage-
current parameters expressed in Tab.4

The large Volt-Ampere-Reactive values reported in 4 are such that some
form of resonant circuit is needed to achieve the required voltage. Solutions
include a tank circuit and/or a step-up transformer. An alternative approach
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Figure 7: Schematic representation of the equivalent circuit of a Pockels cell,
including the capacitance of the crystal, that of the enclosure and of the cables
delivering the voltage to the cell, the DC resistance of the crystal and that
representing dielectric losses.

Frequency [MHz] 10 20 30 60 476

Impedance cell [Ω] -ı1061 -ı530 -ı354 -ı177 -ı22
Current cell [A] -ı0.94 -ı1.88 -ı2.83 -ı5.65 -ı44.86
Power cell [kvar] 0.46 0.92 1.38 2.76 22.27

Table 4: Overview of voltages and currents driven through the circuit by an RF
amplifier able to drive 2 kV p-p at any given frequency in the table.

would be to use resonant cavities with high quality factor, Q. In order to avoid
harmonic contamination, large Q values are required and, therefore, multiple
cavities are needed if an extended frequency bandwidth is to be covered.

Let us now describe three viable solutions for the circuitry at a few tens of
MHz. The first solution consists of a series of resonant cavities to be connected,
one at a time, to the cell. A feasibility study was made with the german company
Qubig and resulted in expected modulation depths of 45, 35 and 20% at 5, 10 and
20 MHz, respectively; the circuit would use 5 W RF power. The second solution
consists of a signal generator, a broadband RF amplifier, a step transformer, an
impedance matching network and the cell. Since the impedance of the crystal,
being almost purely capacitive, varies with the modulation frequency, a multiple
frequency impedance matching network would have to be designed in order
to transform the load impedance into a constant of about 500 Ω. Networks
at multiple frequencies are usually designed by combining more inductive and
capacitive elements in a regular L-type network [12]. A 3:1 step-up transformer
would convert that impedance into a regular 50Ω, thus matching the output
impedance of a regular RF amplifier. The overall cost for such solution would
be about $7000-8000. Usually RF amplifiers have to be connected to matched
loads to avoid damage. There are, however, amplifiers that are built in such
a way that they can be used with unmatched loads, and therefore would not
require an impedance matching network. A quote for one of such amplifiers was
obtained from Electronics & Innovation, Ltd. for a broadband (0.3-35 MHz)
300 W amplifier and 3:1 transformer, which would be $22000. A third solution
was devised by Charles Moeller (GA) and consists of a variable inductor and a
variable capacitor that would create a resonant circuit with the cell at various
frequencies. The voltage in the circuit would be sampled and provided to a
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field effect transistor, thus providing a feed-back loop that creates an oscillator
at the frequency set by the oscillator. The input oscillating voltage would be
amplified a first time by the operational amplifier, and a second time by the tank
resonant circuit. Such solution would be obtained with $1000 in components
and is sketched in fig.8.

Figure 8: Sketch diagram of the third solution described in the text.

This solution was the one adopted in the actual fabrication of the driver;
the variable capacitance and the transistor were procured, while the inductor
was manufactured in house. A picture of the resulting circuit is shown in fig.9,
where operation with 2 kV oscillating at 10 MHz frequency is visible on the
probing oscilloscope.
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Figure 9: Picture of C.Moeller’s resonant circuit, in which the two largest com-
ponents are the variable inductor and capacitor. The resulting high voltage
modulated at 10 MHz is visible on the oscilloscope.

References

[1] D.H. Goldstein, Polarized Light, Third Edition, CRC press

[2] Cécile Malgrange, Christian Ricolleau and Michel Schlenker, Symmetry and
Physical Properties of Crystals, Springer.

[3] M. Bass Handbook of Optics, McGraw-Hill

[4] A. Yariv Optical waves in crystals, Wiley interscience 2003.

[5] S. Coda, An Experimental Study of Turbulence by Phase Contrast Imaging
on the DIII-D Tokamak, MIT 1997

[6] W.L Wolfe and G.J Zissis, The infrared handbook Ann Arbor, Mich. : En-
vironmental Research Institute of Michigan, 1985

[7] M. Porkolab at al., Measurement of Helicons and Parametric Decay Waves
in DIII–D with Phase Contrast Imaging 2015 submitted to DoE for funding.

[8] Y. Tsay, B. Bendow and S. Mitra, Phys. Rev B 8 (1973) 2688

[9] J. Ptasinski, I.C. Khoo and Y. Fainman, Materials 7 (2014) 2229

[10] C. Cohen-Tannoudji, B. Diu and F. Laloe, Quantum mechanics, Wiley-
VCH

[11] M.E. Courtney, IEEE Trans. on Microwave Theory and Technique 25
(1977) 697

20



[12] N. Nallam and S. Chatterjee, IEEE trans. on circuits and systems 60 (2013)
1635

21


