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Lagrange points are the equilibrium points within a restricted three-body system, epitomized by

the Trojan asteroids near the L4 and L5 points of the Sun–Jupiter system. They also play a crucial

role in some space missions, including the James Webb Space Telescope which is located at the

Sun–Earth L2 point. While the existence of five Lagrange points is a well-known feature of the

restricted three-body problem, the equations describing the precise location of all five points are

not extensively documented. This work presents a derivation of all Lagrange points using polar

coordinates and a new normalization scheme that offers a simpler interpretation of solutions

compared to prior analyses. A subtle issue concerning the treatment of angular momentum in the

potential formulation of this problem is addressed and resolved. The supplementary material to

this work contains additional mathematical details and discussion. # 2024 Author(s). All article content,

except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1119/5.0160904

I. INTRODUCTION

The equilibrium points of the restricted three-body sys-
tem are known as Lagrange points.* (The word “restricted”
means that one mass is so much smaller than the other two
that it can be ignored when calculating the dynamics of
the two more massive bodies.) The near-Earth Lagrange
points of the Sun–Earth system, located approximately
1:5� 106 km from Earth, have been home to multiple
satellites: SOHO, WMAP, Planck, and the James Webb
Space Telescope (JWST).1 The first of these is located near
the sun-facing L1 point for continuous solar observations.
In their search for signals of cosmic origin, these other
observatories have been parked near the L2 point to take
advantage of the clear view of deep space.2 Dust clouds
have been observed at the L4 and L5 points of the
Earth–Moon system.3 Further afield, the Trojan asteroids
cluster around Jupiter’s L4 and L5 points. The L3 point has
no known natural or man-made significance.

While the pattern of five Lagrange points for the
Sun–Earth system is relatively well-known, the configura-
tion of these points in systems with significantly larger
mass ratios, like the Pluto–Charon system with a mass
ratio of about 0.12 or an equal-mass binary star system, is
likely less familiar to readers. A symmetry argument for
the latter readily establishes that the configuration for such
a system must look quite different from those for stellar–
planetary systems. Figure 1 compares the locations of the
five Lagrange points for two scenarios, one for a system
with very disparate masses and the other with equal
masses. Beyond the qualitative aspect of the relative loca-
tion of the Lagrange points, one might want to know how

exactly NASA mission engineers determined that the
JWST should be located at a distance of 1:5� 106 km
from Earth?

The definitive text on the subject of Lagrange points is
Theory of Orbits: the Restricted Problem of Three
Bodies.4 Unfortunately, it and many other sources5–10 ana-
lyze the motion in cartesian coordinates, which does not
reflect the natural geometry of the problem. Where this
problem appears in undergraduate physics textbooks, it
receives very abbreviated treatment.11–13 The number of
articles aimed at the undergraduate and educator audien-
ces are few and light on details.14,15 Of these sources,

Fig. 1. (Color online) The configuration of the five Lagrange points are

shown for two cases with m2=m1 of (a) 0.024, about twice the mass ratio of

the Earth–Moon system, and (b) unity. The smaller of the two masses is

located on the right in the first case. The convention is that the L4 point leads

and the L5 point follows m2 in its orbit. Given this, the sense of rotation is

counter-clockwise in this figure, and is the same throughout this work.

*Equilibrium points of a dynamical system are sometimes referred to as sta-

tionary points. Less commonly, these particular equilibrium points are

known as libration points. Some sources distinguish the points by geome-

try, with the first three being the colinear libration points and latter two

being the triangular or equilateral libration points. Other sources (e.g., Ref.

8) refer to the first three equilibrium points as the Euler points, with L4

and L5 described as the Lagrange points. The nomenclature used here fol-

lows that of many other texts and refers to all equilibrium points of the

restricted three-body problem as Lagrange points.
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only Ref. 4 provides approximate solutions to higher than
first-order.

This work presents a thorough analysis of all equilibrium
points using physically motivated arguments and polar coor-
dinates. Many mathematical curiosities will be encountered
on this journey, including the implications of Galois theory
of quintic polynomials, expansions in fractional powers of a
small parameter, symmetries, symmetry breaking, and a
challenge to the local/global dichotomy of conserved quanti-
ties. While this work does not calculate the stability of the
equilibrium points, it should be noted that stability can be
calculated by extending the formalism presented here to sec-
ond derivatives of the potential and including the effect of
the Coriolis force. Such calculations show that only the L4

and L5 points are truly stable.
Section II presents preliminary aspects, including a defini-

tion of the coordinate system and a discussion of the effec-
tive potential. Building on this foundation, Sec. III analyzes
the solutions for three cases. A discussion in Sec. IV summa-
rizes the findings and offers some reflections on a few of the
subtler points of the analysis, which is followed by conclud-
ing remarks in Sec. V.

II. PRELIMINARIES

The analytical goals of this work are formulas for the equi-
librium points of a satellite that is gravitationally bound to
two massive bodies. The two massive bodies, with masses
m1 and m2, will be called the primaries, and the satellite,
with mass m3, will be called the tertiary.† Subsections
II A–II G define the coordinate system, the rotation fre-
quency of the system, the effective potential, discuss the
curious nature of angular momentum in this problem, present
the azimuthal and radial components of the force, and intro-
duce the dimensionless form that will be used in the final
analysis.

A. Coordinate system

Figure 2 presents the coordinate system describing this
problem. All bodies are constrained to move in a plane on
circular paths whose orbital radii (r1, r2, and r) are mea-
sured from the center of mass of the system, with r1 and r2

related through m1r1 ¼ m2r2, since m3 is considered negli-
gible in comparison to m1 and m2. This analysis can be
extended to elliptical orbits, but the approximation of circu-
lar orbits is quite good for many planetary bodies: Earth’s
orbital eccentricity is less than 0.02 and Jupiter’s is approx-
imately 0.05. The angular position of the tertiary in the
rotating frame of the m1-m2 system, denoted by h, is mea-
sured from the line connecting the center of mass and m2. A
tertiary located at an equilibrium point will co-rotate with
the m1-m2 system, meaning that both r and h will be con-
stant. The distances between the tertiary and the primaries
are described by r01 and r02, which can be expressed in single
form as

r0j ¼ r2 6 2rrj cos hð Þ þ r2
j

h i1=2

: (1)

In this and the following three equations, the index j is either
1 (evaluated with the upper sign) or 2 (evaluated with the
lower sign). The net force on the tertiary will involve the
derivatives of Eq. (1) with respect to h and r. They are

dr0j
dh
¼ 7rrj sin hð Þ

r0j
; (2)

and

dr0j
dr
¼ r 6 rj cos hð Þ

r0j
: (3)

B. Rotation frequency of the m1-m2 system

The mass of the tertiary is taken to be so much smaller
than the other two that it can be ignored when calculating the
orbital dynamics of the primaries. It follows that the orbital
frequency of the m1-m2 system is determined only by the
masses of the primaries and the distance between them.
Newton’s second law for the primaries can be expressed in a
single equation as

mjrjx
2
0 ¼

Gm1m2

r1 þ r2ð Þ2
; (4)

where x0 is the angular rotation frequency. An expression
for x0 that is symmetric in the parameters describing the pri-
maries will be useful. Adding m1r2 to both sides of the center
of mass condition, m1r1 ¼ m2r2, and rearranging yields
m1=r2 ¼ ðm1 þ m2Þ=ðr1 þ r2Þ. Evaluating Eq. (4) for m2 and
using the last equality gives

x2
0 ¼

G m1 þ m2ð Þ
r1 þ r2ð Þ3

: (5)

C. The effective potential

Of the large number of undergraduate physics and engineer-
ing textbooks surveyed for this work, only four discuss the
Lagrange point problem: Analytical Mechanics by Fowles and
Cassiday,11 Classical Mechanics by Goldstein et al.,12

Fig. 2. (Color online) The coordinate system used for this analysis considers

the positions of the masses in the rotating reference frame of the m1-m2 sys-

tem. The small open circle represents the center of mass of the system. The

parameters in the square brackets are the associated dimensionless variables

that are introduced in Sec. II F.

†Though the smaller of two massive objects is sometimes referred to as the

secondary, the standard of the literature is to refer to both m1 and m2 as

primaries.
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An Introduction to Mechanics by Kleppner and Kolenkow,13

and Orbital Mechanics for Engineering Students by Curtis.9

The latter analyzes the problem in cartesian coordinates. The
text by Kleppner and Kolenkow presents a very limited treat-
ment of the L4 and L5 points, which assumes without proof that
the geometry is described by an equilateral triangle. The
Classical Mechanics text introduces the problem through the
Lagrangian, but stops short of any further analysis and moti-
vates the solutions through a qualitative analysis by reference
to an illustration of equipotential contours. A brief discussion
of the Lagrangian approach can be found in Appendix A.
These and other sources often provide a visual representation
of the solution space through contour plots of the effective
potential (see, for example, Fig. 7.4.4 on page 294 of Ref. 11
and Fig. 3.30 on page 124 of Ref. 12). The Analytical
Mechanics text by Fowles and Cassiday presents the effective
potential that was used to generate such figures, which is of the
form

V�eff r; hð Þ ¼ �Gm1m3

r01
� Gm2m3

r02
� 1

2
m3r2x2

0: (6)

Curiously, the sign of the inertial term in Eq. (6) is nega-
tive. One might be inclined to chalk this up to a typographi-
cal error, except that it yields correct solutions to the
Lagrange point problem. The effective potential of Eq. (6)
is also known as Jacobi’s constant, a lesser-known con-
served quantity that is found by integrating the radial force
multiplied by _r under the constraint of constant angular
velocity.16 Further commentary on the nature of Eq. (6) fol-
lows in Sec. II F.

Alternatively, the analysis can begin with an effective
potential that leans on intuition from two-body systems
where the centrifugal term is positive. The extension of such
a form to the restricted three-body problem is

Veff r; hð Þ ¼ �Gm1m3

r01
� Gm2m3

r02
þ L2

2m3r2
; (7)

where r01 and r02 are functions of h and r through Eq. (1) and
L refers to the angular momentum of the tertiary. As simple
as it is, Eq. (7) contains a problem. This would be a fine
equation to use if the angular momentum of the tertiary were
a conserved quantity. However, it is only the total angular
momentum that is conserved in a three-body system and it
cannot be assumed that the angular momentum of any single
body is itself conserved.‡ It is, therefore, unclear how the
angular momentum should be treated in this potential. The
resolution to this conundrum is presented subsequently.

D. Conservation of angular momentum

The only possible resolution to the aforementioned puzzle is
that the angular momentum must be conserved in a small
region around each equilibrium point but is not conserved on
larger scales. This sense of local but not global conservation is
rather opposite to the conventional understanding of

conservation laws where local conservation (e.g., of charge)
necessarily implies global conservation. The phrase
“regionally conserved quantity” is introduced here to describe
the peculiar nature of angular momentum conservation over a
small region. This concept is similar to quasi-local conserva-
tion in general relativity where a locally flat but globally
curved spacetime allows energy and momentum to be treated
as both conserved and not-conserved depending on scale.17–20

In the vicinity of a Lagrange point, the azimuthal force is
very weak given a small displacement from equilibrium.
Because this force can be approximated as a linear function
of the angular deviation over these scales, the first correction
to the angular momentum will average to zero over an epicy-
cle due to the fact that this force is an odd symmetric func-
tion. It follows that any net change to the angular momentum
over longer time scales must enter as a second-order or
higher effect and will, therefore, have zero derivative at the
equilibrium point. It is in this sense that we can take the
angular momentum to be conserved in a local region around
each equilibrium point.

E. The angular derivative

The search for equilibrium points proceeds by analyzing
the zeros of the azimuthal and radial forces, which are calcu-
lated from the negative gradient of Eq. (7), treating L as a
constant of the motion. Applying the �r�1ð@=@hÞ operator
to Veff gives the azimuthal force,

Fh ¼ �
1

r

Gm1m3

r021

@r01
@h

� �
� 1

r

Gm2m3

r022

@r02
@h

� �
: (8)

The inertial term has no angular dependence and vanishes
with this derivative. Resolving the derivatives using Eq. (2),
it is found that the first term includes a factor of m1r1 and the
second a factor of m2r2, which are equal. Removing this
common factor in the form of m1r1 yields

Fh ¼ Gm1m3r1 sin hð Þ 1

r031
� 1

r032

� �� �
: (9)

Equilibrium points of the system require Fh ¼ 0, which
admits three cases: (A) h¼ 0, (B) h ¼ p, and (C) r01 ¼ r02.
Case A yields Lagrange points L1 and L2, and case B yields
Lagrange point L3. The third case indicates that the position
of the equilibrium point must lie along the bisector of the
axis between the primaries, which describes Lagrange points
L4 and L5.

F. The radial derivative

It is essential that the conditions derived in the prior sec-
tion be applied after the radial derivative is calculated. The
radial force, calculated from �ð@=@rÞ applied to Eq. (7), is

Fr ¼ �
Gm1m3

r021

@r01
@r

� �
� Gm2m3

r022

@r02
@r

� �
þ L2

mr3
: (10)

With the derivatives properly calculated, L can now be
replaced with mr2x0, which results in

Fr ¼ �
Gm1m3

r021

@r01
@r

� �
� Gm2m3

r022

@r02
@r

� �
þ mrx2

0: (11)

‡Given this, one might object that the potential is ill-defined because the

angular momentum will not, in general, be conserved when integrating

from infinity to r as is often done when defining potentials. This issue is

resolved by taking the reference point to be the Lagrange point itself and

adding a constant to Eq. (7), which leaves the subsequent analysis

unchanged.
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Before proceeding, we pause to consider the meaning of Eq.
(6) in light of Eq. (11). That form of the effective potential,
with the negative centrifugal term, is recovered when the
inverse operation is applied to Eq. (11). While this is a valid
mathematical operation, it is one that is devoid of physical
meaning because the angular velocity is not a constant of the
motion yet is assumed to be equal to x0 as r varies. One may
wonder why Eq. (6) is used at all if it has questionable physi-
cal meaning? One answer is that is a convenient short-hand
that skirts the complications of the angular momentum.
Another is that the physically meaningful form of the effec-
tive potential described by Eq. (7) does not lend itself to
visual analysis of the solution space since it has no extrema
at the Lagrange points, whereas Eq. (6) does. This point is
revisited in Sec. IV and comparative illustrations of Eqs. (6)
and (7) are presented in the supplementary material.21

Applying the derivative with respect to r given in
Eq. (3) and the definition of x2

0 from Eq. (5) to Eq.
(11) yields the final form that will be used in the
subsequent analysis

Fr ¼ Gm3

�
�m1 r þ r1 cos hð Þ

� �
r031

� m2 r � r2 cos hð Þ
� �

r032
þ m1 þ m2ð Þ

r1 þ r2ð Þ3
r

�
: (12)

G. Dimensionless forms

The main goal of using dimensionless forms is to separate
the scale and shape of the problem to simplify the analysis.
The terms in square brackets in Eq. (12) can be put in a
dimensionless form by scaling the lengths by a normalization
length, R, and the masses by normalization mass, M. Ideal
dimensionless forms of Eq. (12) have ðr1 þ r2Þ=R ¼
ðm1 þ m2Þ=M because this results in a greatly simplified cen-
trifugal term. The method used here takes R¼ r2 and
M¼m1, which satisfies the prior condition since r1=r2 ¼
m2=m1 is equivalent to the center of mass condition. Under
this transformation, the dimensionless form of m1 becomes 1
and the dimensionless form of m2 is defined as m2=m1 ¼ l,
which is known as the mass ratio. It follows that the dimen-
sionless forms of r1 and r2 are l and 1, respectively. Since
both the mass and radial scales are described by a single
parameter, l, cases with l0 > 1 need not be considered since
they are described by l ¼ 1=l0 with the locations of m1 and
m2 swapped. Therefore, l is limited to the range 0 < l � 1
in this analysis. Under this normalization scheme, the radial
force is

Fr¼
Gm1m3

r2
2

�xþlcos hð Þ
x031

�l x�cos hð Þð Þ
x032

þ x

1þlð Þ2

" #
; (13)

where x ¼ r=r2; x01 ¼ r01=r2, and x02 ¼ r02=r2. The collection
of constants in front of the square brackets is ignored hereaf-
ter. Equation (13) has an interesting interpretation when the
centrifugal term (the final term inside the brackets) is inter-
preted as the gravitational force from a mass of x located at a
distance of 1þ l beyond the tertiary. While this interpreta-
tion does not have any physical meaning, viewing it this way
may help to understand the importance of the Coriolis force
as an essential stabilizing effect.

Szebehely,4 Cornish,5 and Widnall et al.6 take an alternate
approach and use R ¼ r1 þ r2 and M ¼ m1 þ m2, which also
satisfies ðr1 þ r2Þ=R ¼ ðm1 þ m2Þ=M, where l� ¼ m2=
ðm1 þ m2Þ is the dimensionless maas ratio (note: while those
texts also use the symbol l, the “�” is added here to differen-
tiate this definition from the definition of l used in this
work). These two definitions of the mass ratio are related
through l ¼ l�=ð1� l�Þ. While the use of l instead of l� is
a departure from the standard of the literature, it is argued
here that it has several advantages. First, there is the aes-
thetic quality that l spans the range 0 < l � 1 whereas l�

spans the range 0 < l� � 1=2. Second, the first-order
approximations of the radial force equation for the L1 and L2

points are much simpler when described in terms of l. Third,
Ref. 4 presents series solutions for the radial locations of L1

and L2 in terms of a quantity l�=ð1� l�Þ, which is equal to
l and suggests that l is in fact an optimal dimensionless
form. Finally, and most importantly, the radial location of
the L2 point is non-monotonic when described in terms of l�

and the L4 and L5 points decrease with increasing l�, both of
which are rather counterintuitive and require significant care
to correctly interpret. In contrast, the formulas for the L2

point and the L4 and L5 points are increasing monotonic
functions when described in terms of l. Figure 3 depicts the
pattern of solutions with increasing l for all five Lagrange
points. A detailed comparison of these normalization
schemes, their associated solutions for the Lagrange points,
and the transformations between them can be found in the
supplementary material.21

III. SOLUTIONS TO THE LAGRANGE POINT

PROBLEM

The analysis is now reduced to a purely mathematical
problem of finding the radial and angular coordinates that
allow both components of the force to vanish simulta-
neously. Solutions are discovered analyzing the dimension-
less part of Eq. (13) subject to the three cases defined in Sec.
II E. For multiple reasons, it is helpful to begin by exploring
first-order approximations to Eq. (13) before delving into the
search for exact and higher-order solutions. The results of
these analyses are summarized in Fig. 4, which shows how
the radial coordinates of the Lagrange points vary with l.

Fig. 3. (Color online) The locations of m1 and the five Lagrange points are

shown as l is varied between zero and unity. The arrows indicate the evolu-

tion of the Lagrange points with increasing l. The black line indicates the

location of m1 in normalized coordinates, while m2 is fixed at a radius of 1 in

dimensionless units. The open circle represents the center of mass.
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A. First-order approximations to the radial force
equation

As will be shown, exact, closed-form equations for the
locations of L4 and L5 exist, so no approximations for these
cases are needed. This section focuses on first-order approxi-
mate solutions for the other three Lagrange points. The anal-
ysis of the L3 point is the easiest to understand and provides
a good starting point for this discussion. The equation for the
L3 point is found by setting h ¼ p in the terms in square
brackets of Eq. (13). Equilibrium at L3 requires

� 1

x� lð Þ2
� l

xþ 1ð Þ2
þ x

1þ lð Þ2
¼ 0: (14)

It is useful to start with a qualitative discussion of the bal-
ance of forces. Recall, the first term in Eq. (14) represents
the attraction of m3 to m1, the second represents the attrac-
tion of m3 to m2, and the last is the inertial term. Because m1

is far more massive than m2 in the limit of small l and the
latter is located further from the tertiary, the motion of m3 is
dominated by its interaction with m1. Therefore, the orbital
radius of the tertiary should be similar to that of m2. That is,
the analysis is best done when considering r ¼ r2 þ Dr in
dimensional variables, which is equivalent to x ¼ 1þ D with
D� 1 in dimensionless variables. Two effects increase the
gravitational force at x¼ 1 for finite l compared to the l¼ 0
case: m1 is shifted slightly toward m3, and the gravitational
force of m2 on m3 adds to that of m1 on m3. These effects
require an outward shift of the tertiary (positive D) to main-
tain synchronous orbit. Changing variables from x to D and
conducting a first-order Taylor series expansion for small
parameters (l and D) gives

� 1� 2Dþ 2lð Þ � l
4
þ 1þ D� 2lð Þ � 0: (15)

After gathering like terms, this equation becomes
�ð17=4Þlþ 3D � 0, from which the approximate solution
D � ð17=12Þl emerges. This is equivalent to

x3 � 1þ 17

12
l: (16)

Some readers may notice that the coefficient of l in Eq. (16)
differs from that found in other texts on the subject, such as
Refs. 5 and 6, which present the coefficient of D as having
the value 5/12. This difference is a result of the different nor-
malization schemes used between the analyses, and the
above is readily shown to be equivalent to the previously
established results.§

For the L1 and L2 points that exist in the neighborhood of
m2, the gravitational force from m2 enters much more
strongly as l=D2. The direction of gravitational force from
m2 depends on whether x> 1 (L2) or x< 1 (L1). In this and
the following analyses, the upper sign will be associated
with the L2 branch and the lower sign with the L1 branch.
The specific form of the dimensionless part of Eq. (13) eval-
uated with h¼ 0 is

� 1

xþ lð Þ2
7

l

x� 1ð Þ2
þ x

1þ lð Þ2
¼ 0: (17)

Changing variables using x ¼ 1þ D, the denominator of the
middle term becomes D2, which results in a very different
scaling compared to the L3 solution. A first-order Taylor
series expansion of the first and third terms yields

� 1� 2D� 2lð Þ7 l

D2
þ 1þ D� 2lð Þ � 0: (18)

After canceling terms, this equation reduces to 7l=D2

þ3D � 0, which is equivalent to

x2;1 � 16
l
3

� �1=3

: (19)

The Sun–Earth system has ðmE=3mSÞ1=3 � 1=100 to an
accuracy of better than one part in a thousand. It follows that
the distance of the L1 and L2 points from Earth is very close
to 1=100th of the Earth–Sun distance (about 150� 106 km),
yielding the 1.5� 106 km value that was cited in the intro-
duction. At the Sun–Earth L2 point, the angle subtended by
the Sun is approximately 9.3 mrad, whereas that of the Earth
is approximately 8.5 mrad. It follows that the visible fraction
of the Sun’s area at L2 is about 1� ð8:5=9:3Þ2, or roughly
20% of the total, though the actual fraction of solar radiation
received there is somewhat less than this due to solar limb
darkening.22

B. Numerical analysis

An alternative to symbolic analysis is the discovery of sol-
utions through a search procedure that calculates a finite
table of solutions. The results of such a numerical search are
presented as the solid color lines in Fig. 4. Many different
numerical methods and tools can be used for such purposes.
Two possible approaches are described here. Figure 4 was
generated using a simple Python script with a nested loop
structure. The first loop evolved l through a specified set of
values, and a secondary loop then scanned x values for each
value of l to find the roots of the relevant polynomials (pre-
sented subsequently) for the L1, L2, and L3 Lagrange points.
A simple and convenient way to explore the solution space

Fig. 4. (Color online) Numerically derived solutions for the locations of all

five Lagrange points are plotted as the solid color lines. The thin dashed

lines represent the first-order approximations for L1 and L2 that are

described in Sec. III A. The thick dotted lines are the higher-order approxi-

mations described in Eqs. (21)–(23).

§This is easily proven by replacing l with l�=ð1� l�Þ and then calculating

a new x�3 by scaling x3 by r2=ðr2 þ r1Þ ¼ 1=ð1þ lÞ ¼ 1� l�, which gives

x�3 ¼ 1þ ð5=12Þl�.
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can be done using graphing software, like Desmos
(https://www.desmos.com/), with a first equation that speci-
fies the range of l values to be explored with a second equa-
tion defining the relevant polynomial. The roots can then be
inspected by hand and a graph constructed from a table of
solutions. Other tools, such as root-finding functions that are
common in many programming languages, can be used to
the same effect.

C. Higher-order approximations and exact solutions

The following subsections present higher-order, quasi-
analytic approximations for the L1, L2, and L3 points, and
derive exact solutions for the L4 and L5 points.

1. Case A: h 5 0

This case considers Lagrange points L1 and L2 that exist
along the axis extending from m1 through m2. The search for
analytic solutions proceeds best when using an alternate
form of Eq. (13) that seeks zeros of the numerator after a
common denominator has been extracted. The numerator
becomes a fifth-order polynomial, which is described as
f ðx; lÞ ¼

Pn¼5
n¼0 fnxn, where the coefficients are given in

Table I. Examples of the two forms of f ðx; lÞ, calculated for
the specific case of l ¼ 0:5, are presented in Fig. 5. A single
real-valued and positive root exists for each branch. Since all
of the denominators of Eq. (13) are squared, and therefore
positive, the sign of the effective radial force has been pre-
served in the transformations leading to f ðx; lÞ. This means
that the sign of the curves in Fig. 5 can be interpreted as the
direction of the net radial force. This also illustrates the
unstable nature of these equilibria since a positive displace-
ment will lead to a positive force in both cases.

A change of variables from x to D using x ¼ 1þ D results
in the cancellation of many terms in f, yielding the simplified
form

f D; lð Þ ¼ 7l 1þ lð Þ2 1þ lþ Dð Þ2

þ D3 3þ 4lþ l2
� �

þ 3þ 2lð ÞDþ D2
h i

:

(20)

In the limit of small l, a logical way to order this equation
would be to group terms by powers of l and D and then
ignore second-order and higher terms. A naive approach to
generating solutions is to begin by keeping only the lowest

order terms by ignoring the D3 term and everything multiply-
ing it in Eq. (20). The only way to balance the equation in
this limit is by requiring D � �ð1þ lÞ. However, this is
incorrect since it does not provide positive solutions
(required for L2), does not allow D to go to zero as l van-
ishes, and does not reproduce anything like the approximate
form found in the prior section. This approach fails because
the approximation scheme is inconsistent if D is proportional
to a fractional power of l since it would then be improper to
ignore higher powers of D as these can be of the same or
lower order as l. The only way to resolve this inconsistency
is to balance the lowest order components of the first term in
Eq. (20), being 7l, with the lowest order component of the
second term with square brackets, 3D3. Doing so yields
the approximate equation 7lþ 3D3 � 0, which gives
D � 6ðl=3Þ1=3

, in agreement with the conclusions based on
the physical reasoning described in Sec. III A. This illustrates
the importance of beginning with simpler solutions that can
help put the full analysis on the right path (Figs. 6 and 7).

Galois theory of polynomials has established that the roots
of quintic and higher-order polynomials cannot, in general,
be expressed in terms of elementary functions, a result of
group theory analysis often referred to as “the insolvability
of the quantic.” Therefore, an exact expression for the solu-
tion of Eq. (20) must be represented as an infinite series.
Because the first-order term scales like l1=3, all higher-order
terms in the series expansion must be integer powers of l1=3.
Following a significant amount of algebra, which is

Table I. Coefficients of the function f ðx; lÞ:

f0 �1� 2l� l2 7 l3 7 2l4 7 l5

f1 2þ 4lþ ð3 7 2Þl2 7 4l3 7 2l4

f2 �1 7 l� ð362Þl2 7 l3

f3 1� 4lþ l2

f4 �2þ 2l
f5 1

Fig. 5. (Color online) Plots of the function f ðx; l ¼ 0:5Þ showing the

branches particular to the L1 point (green, upper curve) and the L2 point

(blue, lower curve). The dotted lines show the continuation of the functions

into the non-physical regions.

Fig. 6. (Color online) Plots of the function gðx; l ¼ 0:5Þ with the x < l
branch (orange, upper curve) and the x > l (L3) branch (red, lower curve).

The dotted lines show the continuation of the functions into their non-

physical regions. The x < l branch has no real-valued roots and therefore

does not represent a solution to the Lagrange point problem.
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presented in the supplementary material, two relatively effi-
cient approximate forms are found to be

x1 � 1� l
3

� �1=3

þ 1

3

l
3

� �2=3

þ 1

9

l
3

� �3=3

� 176

81

l
3

� �4=3

;

(21)

and

x2 � 1þ l
3

� �1=3

þ 1

3

l
3

� �2=3

� 1

9

l
3

� �3=3

þ 203

81

l
3

� �4=3

:

(22)

The exact values of the coefficients of the final terms are
�220=81 and þ212=81, respectively. These terms have been
modified from their actual values to better match the solu-
tions calculated through numerical analysis. These quasi-
analytic forms work well over the entire range of l and have
average deviations, measured over the range 0 � l � 1,
from the numerical solutions of less than 10�2. Exact expan-
sions out to sixth-order can be found in Appendix B and deri-
vations of these terms are presented in the supplementary
material.

This pair of solutions possess interesting symmetry prop-
erties. The magnitudes of the coefficients of x1 and x2 are
symmetric in the first three terms and then deviate starting at
the fourth term, which begins with the introduction of the l2

term at that order in the expansion. In this light, the solutions
to Eq. (20) possess qualities that may inspire thoughts of
explicit symmetry breaking that is frequently encountered in
quantum mechanics, as in Zeeman splitting.23

2. Case B: h 5 p

Similar to the prior case, there are two sub-cases for
h ¼ p, depending on whether the radial location of m3 is
greater than or less than r1, which are illustrated in Fig. 6 for
the case of l¼ 0.5. However, given that the linear approxi-
mations of Sec. III A established that there is only one viable
branch for h ¼ p, only the x > l branch is analyzed here. A
full analysis of this case, including both branches, can be
found in the supplementary material. Proceeding as for the
prior case by changing variables from x to D, the fifth-order

polynomial for the L3 point is gðD; lÞ ¼
Pn¼5

n¼0 gnD
n whose

coefficients of are given in Table II.
Unlike the solutions for L1 and L2 that required expansion

in fractional powers of l, the solution for the L3 point is
solved with integer powers of l. A quasi-analytic approxi-
mation for x3 with average deviation from the numerical sol-
utions of less than 10�3 is

x3 � 1þ 17

12
l� 412

124
l3: (23)

The coefficient of the l2 term is identically zero, and the
exact value of the l3 coefficient is �1127=124, though a
much better approximation for this truncated series is
achieved when this coefficient is reduced substantially.

3. Case C: r 01 5 r 02

The third case is defined by the condition that the tertiary
be equidistant from the primaries and gives rise to the L4 and
L5 points. By itself, this condition requires that the triangle
formed by the locations of the masses be isosceles, with the
tertiary at the point of symmetry. As will be shown, the addi-
tional constraint imposed by the requirement that the radial
derivative of the effective potential vanish leads to the con-
clusion that the locations of the masses form an equilateral
triangle for all values of l.

A closed-form solution for this cases exists. This can be
arrived at by first equating r021 and r022 , using Eq. (1), to solve
for cos ðhÞ ¼ ðr2 � r1Þ=2r ¼ ð1� lÞ=2x. Then, replacing the
cos ðhÞ term in the expressions for r01 and r02 with the prior
form yields r01 ¼ r02 ¼ ðr2 þ r1r2Þ1=2

, which is equivalent to
x01 ¼ x02 ¼ ðx2 þ lÞ1=2

in dimensionless variables. As before,
a governing function is generated for this case by creating a
common denominator in the dimensionless part of Eq. (13).
Doing so and applying the results just found yields

h x; lð Þ ¼ x � 1þ lð Þ3 þ x2 þ l
� �3=2

h i
: (24)

The only physically allowable zeros of this expression are
x¼ 0 and the value of x that causes the quantity in square
brackets to vanish. The former is the limiting value of the L1

branch when l¼ 1. The latter provides the solution for the
radius of the L4 and L5 Lagrange points, which is given by

x4;5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lþ l2

p
: (25)

Using this result, a simple form for the angular positions is
found to be

cos hð Þ ¼ 1

2

1� lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lþ l2

p : (26)

Figure 7 presents Eq. (25) with l¼ 0.5. Equation (26)
admits two solutions, which produce the well-known angular
positions of 6p=3 (660�) in the limit of l¼ 0. Because h is

Table II. Coefficients of the function gðD; lÞ:

g0 0� 17lþ 0l2 þ 2l3 þ 0l4 � l5

g1 12� 34lþ 2l2 þ 2l3 þ 2l4

g2 24� 29lþ 2l2 � l3

g3 19� 12lþ l2

g4 7� 2l
g5 1

Fig. 7. (Color online) Plot of the function hðx; l ¼ 0:5Þ.
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measured from the center of mass location, it is not obvious
what geometry between the masses is implied by this solution
for other values of l. This is readily resolved by observing that
the distance between the primaries is 1þ l and, as established
previously, the other two sides have lengths of ðx2 þ lÞ1=2 ¼
ð1þ 2lþ l2Þ1=2 ¼ 1þ l, using Eq. (25). Therefore, the
shape formed by the locations of the masses is always an equi-
lateral triangle.

IV. DISCUSSION

The foregoing analysis has shown how the positions of all
Lagrange points can be calculated for arbitrary mass ratios.
A relatively simple image of the solutions emerges when one
considers the mass ratio as describing a fixed m1, such as a
star, with the mass of the second primary increasing from
something infinitesimal in comparison (e.g., a small planet)
to that of an equal mass binary star system. In this represen-
tation, all points except for the L1 point move outward with
increasing l. The solutions presented here stand in contrast
to other analyses which, using a different normalization
scheme, generate solutions that are non-monotonic or
decreasing functions of the mass ratio and whose interpreta-
tions require more care.

One of the main contributions of this work has been to
clarify the meaning of the curious form of the effective
potential described in Eq. (6), which is often used in discus-
sions of the Lagrange points, either directly or indirectly
through contour plots. While this form gives the correct
equilibrium points upon taking a derivative with respect to r,
it is a form that is rather devoid of physical meaning since it
requires that the angular velocity be treated as a constant of
the motion. This cannot be true since departures from sta-
tionary points result in epicyclic motion with variable angu-
lar velocity even in two-body systems.16 Rather than being
mere convenience, it seems likely that the use of this unphys-
ical form of the effective potential stems from the fact that
contour plots of Eq. (6) conveniently illustrate the correct
locations of the Lagrange points, in contrast to Eq. (7), which
does not reveal the Lagrange points. This is because, funda-
mentally, the analysis of the Lagrange points is a force anal-
ysis, which means that illustrations of the solution space
require a function that represents the spatial structure of the
forces. While Eq. (7) is the correct starting place for this
analysis, it does not lend itself to visualization of the solution
space since the centrifugal term changes sign after taking the
radial derivative of Eq. (7), which must be followed by a
change of variables from L to m3r2x0. Conversely, Eq. (6)
preserves the overall structure of the forces and lends itself
to visual representation. A comparison of contour plots gen-
erated in Eqs. (6) and (7) is presented in Sec. V of the sup-
plementary material notes.

One might object that, despite being the more accurate
physical representation, the loss of the ability to visualize the
problem when using Eq. (7) is a loss of intuition and that Eq.
(6) is justified on these grounds. That would be a good argu-
ment in favor of continued use of Eq. (6) if it were not for a
third path. It is possible to maintain rigor by using Eq. (7) as
a starting point for the analysis and presenting a visual illus-
tration of the solution space through a contour plot of the
norm of the total force, as is done in Fig. 8. The norm of
the total force is a quantity that has minima (zeros) at the
Lagrange points and therefore similarly motivates this
analysis without any of the misleading aspects of Eq. (6).

Of course, all such forms should be taken with a grain of salt
since they lose their physical meaning outside of a small
neighborhood around each of the Lagrange points where the
angular momentum cannot be treated as a constant of the
motion.

V. CONCLUSIONS

The primary goal of this work is a thorough analysis of the
restricted three-body problem using the natural geometry
described by polar coordinates, culminating in formulas that
describe the locations of all Lagrange points. This problem
was originally solved as special cases of the more general
problem of harmonic motion in the three-body problem, first
by Leonhard Euler in 1767 for the L1, L2, and L3 points,24,25

and subsequently by Joseph Louis Lagrange in 1772 for the
L4 and L5 points.26 It is humbling to revisit the studies of the
past and see how much was done with so little, and it is
remarkable that this problem, now over 250 years old, con-
tinues to provide fertile ground for new insights.

A number of interesting puzzles and mathematical curiosi-
ties were encountered throughout this work, among them an
application of Galois theory of polynomials, symmetry and
symmetry-breaking, and the role of normalization in shaping
the solutions. A new contribution of this work is a set of
quasi-analytic approximations for the radial locations of the
L1, L2, and L3 points that describe the solution space to high
accuracy for all values of l. Perhaps the most important
aspect of this work is the clarification regarding the nature of
angular momentum. The proper formulation of the problem
requires that angular momentum be treated as an invariant
near the equilibrium points even though it is not a locally
conserved quantity. This observation naturally leads to the
recognition that a third kind of conservation law, described
here as regional conservation, is needed. Students of general
relativity, in particular, may benefit from thinking of this
aspect of the Lagrange point problem as they ponder the
nature of energy conservation on local and cosmic scales.
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Fig. 8. (Color online) The norm of the net force at each location in space is

calculated for the case l ¼ 0:192 and presented as a countour plot. The open

circle in the center of the contour plot is the center of mass of the m1-m2 sys-

tem. The contour levels represent a nonlinear scale.
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APPENDIX A: LAGRANGIAN ANALYSIS

Some texts, like Ref. 12 approach this problem through
analysis of the Lagrangian for the restricted three-body sys-
tem. The stationary points of the system are found by requir-
ing that the time derivatives of all coordinates are zero.
Importantly, such constraints on the motion are compatible
with the Lagrangian method only when they are imposed
after the variations are allowed. The following equations out-
line how the equilibrium points can be derived from the
Lagrangian. Ignoring the z coordinate and taking h to be
measured in the rotating frame of the m1-m2 system, the
Lagrangian and its associated Euler equations for h and r are

L ¼ 1

2
m _r2 þ 1

2
mr2 x0 þ _h
� �2

þ Gm1m

r01
þ Gm2m

r02
; (A1)

�Gm1m

r021

dr01
dh

� �
�Gm2m

r022

dr01
dh

� �
�m

d

dt
r2 x0þ _h
� �	 


¼ 0;

(A2)

and

mr x0 þ _h
� �2 � Gm1m

r021

dr01
dr

� �

� Gm2m

r022

dr01
dr

� �
� m

d

dt
_r ¼ 0: (A3)

With the variation applied to the Lagrangian, it is now
possible to solve for stationary points by enforcing time

independence, which requires r2ðx0 þ _hÞ ¼ constant and
_r ¼ constant. The former is a statement that the angular
momentum of the tertiary is a constant. If it is to remain at

an equilibrium point, then it must also be the case that _h ¼ 0
and _r ¼ 0. Importantly, the angular momentum is not gener-
ally constant for this system, but is constant for an object in
equilibrium at a stationary point of the system. Given that
this conclusion was arrived at by allowing all local variations
of the paths, which is akin to establishing consistency of the
dynamics in a neighborhood of the physical path, this is
equivalent to the statement that the angular momentum is a
constant of the motion in a region around the equilibrium
point. Applying the stationarity constraints to the Euler equa-
tions gives

�Gm1m

r021

dr01
dh

� �
� Gm2m

r022

dr01
dh

� �
¼ 0; (A4)

and

mrx2
0 �

Gm1m

r021

dr01
dr

� �
� Gm2m

r022

dr01
dr

� �
¼ 0; (A5)

which are identical to Eqs. (8) and (11), respectively.

APPENDIX B: HIGHER-ORDER EXPANSIONS

Expansions to higher order in l can be carried out, though
with progressively more effort required for each additional
term due to the nonlinear nature of the generating equations
for the series expansions. Further details of this aspect of the

analysis are provided in the supplementary material that
accompany this text. The sixth-order expansions for the L1,
L2, and L3 points are

x1 ¼ 1� l
3

� �1=3

þ 1

3

l
3

� �2=3

þ 1

9

l
3

� �3=3

� 220

81

l
3

� �4=3

þ 92

243

l
3

� �5=3

þ 4

9

l
3

� �6=3

þOðl7=3Þ; (B1)

x2 ¼ 1þ l
3

� �1=3

þ 1

3

l
3

� �2=3

� 1

9

l
3

� �3=3

þ 212

81

l
3

� �4=3

þ 124

243

l
3

� �5=3

� 4

9

l
3

� �6=3

þOðl7=3Þ; (B2)

and

x3¼1þ17

12
l�1127

124
l3þ19159

125
l4�3217389

127
l5

þ145523287

128
l6þOðl7Þ: (B3)
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