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Orbital interception scenarios typically involve a chaser that is actively maneuvered to encounter

an inertial target and may be undertaken for a variety of purposes, including docking spacecraft or

colliding with an asteroid for planetary defense studies. Viable intercept trajectories are

constrained by the free-fall path of the target and by auxiliary conditions such as the available time

or fuel budget. Whereas a constraint on the time to intercept is central to the (extensively studied)

Lambert problem, a less common but more visually compelling constraint is that of the available

fuel for intercept. This was the basis of a recent study [E. M. Edlund, Am. J. Phys. 89, 559–566

(2021)], which analyzed one of the two families of possible intercept solutions that were identified.

The second family, studied in more detail here, describes intercepts at all points in the orbit and has

the interesting property that it admits fast-intercept solutions. This work concludes the analysis of

this problem; it develops a general condition that describes both families of intercepts, presents

representative solutions, and considers the sensitivity of these solutions to errors in the control

parameters. # 2023 Published under an exclusive license by American Association of Physics Teachers.

https://doi.org/10.1119/5.0095559

I. INTRODUCTION

Long before space travel was considered a possibility,
there was great interest in the intercept problem, first made
famous by Lambert in 1761. The Lambert problem, as it is
now known, seeks the velocity of a body given astronomical
measurements of its position at two times. The solution
allows the position of the body to be determined at any later
time, thereby providing great predictive capability. This
problem spurred seminal developments in celestial mechan-
ics and analysis by some of the best minds of the time.1,2

There is a long and rich history of the literature stemming
from the Lambert problem, which was reinvigorated in the
1950s with the development of spaceflight. Modern incarna-
tions of this problem often have a goal of finding the thrust
vector that will allow an actively maneuverable craft to inter-
cept an inertial target (meaning a craft on a “free-fall” or
“ballistic” path) at a specific time.

A number of recent articles have focused on interesting
and insight-building problems involving orbital dynamics,
including analysis of the Lambert problem using a search
method3 and using the Hohman transfer in introductory
physics courses.4 An analysis of close-proximity rendezvous
using the Clohesy–Wiltshire equations was presented in Ref.
5, a set of multi-thrust methods for achieving escape velocity
from an initially circular orbit was given in Ref. 6, and a
detailed analysis of Kepler’s problem that examines all pos-
sible paths between two points in space was provided in Ref.
7. Reference 8 approached the intercept problem by consid-
ering a constraint of a specified Dv, which can be thought of
as a constraint on the quantity of available fuel. Therefore, it
was argued that this particular variation is an excellent prob-
lem for undergraduate students, because (in contrast to a
constraint on the intercept time) the velocity constraint is
more readily visualized and developed deeper intuition for
motion on elliptical trajectories. A simple HTML-Javascript
simulator was provided to help visualize and gamify this
study of orbital dynamics.

While the work of Ref. 5 identified two possible families
of intercept solutions, it analyzed only the first family in

which intercept/rendezvous occurs after an integer number
of chaser orbits. However, the second family of intercept sol-
utions is particularly interesting, because it allows for fast
intercepts that occur before the target has completed a full
orbit. Such fast-intercept maneuvers may be relevant to plan-
etary defense against civilization-threatening asteroids or
comets where a short, but not pre-determined, time may be
of the essence.9 The Planetary Defense Coordination Office,
a division within NASA, tracks known threats and develops
mitigation plans.10 As part of that effort, NASA’s DART
mission successfully intercepted the asteroid Dimorphos, the
smaller of a double-asteroid pair, on September 26 of 2022
to test deflection by kinetic impact.11 Other recent develop-
ments in this line of work include space debris collectors12

and an actively maneuvering Russian satellite thought to be
a satellite hunter of sorts.13

One can, of course, find solutions to the intercept problem
using a “guess-and-check” method, where initial parameters
are guessed, the trajectories are checked (using something
like the HTML-javascript program distributed with Ref. 5),
and then the parameters are iterated until an acceptable solu-
tion is found. This approach is effective but falls short of
what is typically expected of a physics analysis in at least
three important ways. First, such calculations necessarily
rely on an external tool to plot the trajectories and, therefore,
outsources the physics analysis to someone else. Second,
guess-and-check solutions typically require many iterations
and are not very efficient, especially if one wants to examine
a wide range of parameters. Third, when a solution is finally
realized, one has no way of determining whether it is in any
way ideal or optimal. In contrast, an analytic solution
requires greater initial effort, but also rewards with physical
insight and provides great flexibility to efficiently explore
parameter dependency and the sensitivity of solutions to
errors.

This paper proceeds with some preliminaries and a recap
of important results in Sec. II, followed by a formal defini-
tion of the problem and derivation of the intercept condition
in Sec. III, with a discussion of solutions in Sec. IV A and
sensitivity of solutions in Sec. IV B. A brief analysis of the
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rendezvous maneuver is covered in Sec. V with concluding
thoughts presented in Sec. VI.

II. PRELIMINARIES

The overall goal of this work is to calculate the two thrusts
that are required for: (a) interception (the meeting of space-
craft) and (b) rendezvous (the matching of speeds following
interception). There exist multiple methods for calculating
such maneuvers. References 6, 8, and 14 discuss a number of
aspects of the intercept problem and its historical relevance.
Reference 14, in particular, analyzes an intercept problem
that is very similar to that discussed presently but in the
rotating reference frame of the target and using small param-
eter expansions. The analysis presented here is different
from these other analyses in that it views all motion in the
planet’s inertial frame, provides a method for exact solu-
tions, and considers a constraint that is equivalent to a given
quantity of fuel. This section begins by defining the coordi-
nate system and initial conditions for this problem.

A. The coordinate system and initial conditions

The analysis presented here builds on that of Ref. 5 and
uses the same coordinate system and symbolic representa-
tions. Figure 1 shows the coordinates used to describe the
target and the chaser, the phase (/) of the chaser’s trajectory,
and the two families of intercept solutions. Since intercepts
can occur only where the two orbits intersect, the first family
of intercept locations occurs at the chaser’s initial position
and the second family exists at an angle of 2/, measured
clockwise from this initial position.

The dynamic variables describing the positions of the craft
will be identified using the subscripts: c for chaser, t for tar-
get, and i for initial conditions. Both craft begin on circular
orbits of the same radius so that rc;i ¼ rt;i ¼ r0, and the target
will continue on this circular orbit after the chaser makes its
intercept maneuver. The initial motion of both craft is taken

to be counter-clockwise, which defines the sense of positive
angular motion. The angular positions of the craft are mea-
sured relative to the initial position of the chaser; the target
is initially separated from the chaser by a known angle, so
that hc;i ¼ 0 and ht;i ¼ h0. Angles in equations will be
expressed in radians, whereas angles in subsequent figures
will be expressed in degrees to aid in understanding.

Time is measured from the completion of the chaser’s
engine burn, which is modeled as being instantaneous so that
the chaser’s position at the start and end of the burn is
hc ¼ 0. The orbital period of the target is T0 ¼ 2pr0=v0, with

orbital frequency x0 ¼ v0=r0, where v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=r0

p
is the

linear speed of a craft on a circular orbit of radius r0. Here, G
is the universal gravitational constant, and M is the mass of
the central gravitational body. The engine burn modifies the
chaser’s velocity by Dv directed at an angle of a clockwise
from forward such that the radial and azimuthal components
of the chaser’s initial velocity are vc;r;i ¼ Dv sin ðaÞ and
vc;h;i ¼ v0 þ Dv cos ðaÞ, respectively. The normalized thrust
is defined as d ¼ Dv=v0. A typical scale for many space mis-
sions is d � 0:05, but this can be greatly exceeded in special
missions. For example, Ref. 14 presents a flight plan for the
Apollo 11 mission wherein the third stage of the Saturn V
rocket would use d � 0:41 to propel the lunar lander from
Earth orbit to the moon.15 In addition, normalized thrusts
exceeding unity were achieved on the Voyager missions.

The following discussion refers to “fast-intercept” maneu-
vers, which are intercepts that occur before the target has
completed a full orbit. Before completing an in-depth analy-
sis, two predictions for fast-intercept maneuvers are made
for the case where the target leads the chaser. First, it seems
rather intuitive that a larger Dv should result in a smaller
intercept time when the chaser is properly oriented (in the
sense of Eq. (13)) for a fast-intercept maneuver. Therefore,
as the impulse is increased, we anticipate that the angular
coordinate at which intercept occurs should decrease.
Second, thrusts that are directed purely forward will place
the chaser in an orbit with a larger period and will only
increase the distance between the craft. Instead, thrust
maneuvers directed both forward and inward (with
270� � a < 360�) are likely candidates for fast-intercept sol-
utions. While the overall orbital period after such a maneu-
ver is longer than that of the target, such maneuvers work
because the modified orbit initially takes the chaser to a
lower altitude. Furthermore, an inward maneuver with some
degree of reverse thrust (180� � a � 270�) will also place
the chaser onto a lower altitude orbit that will quickly
advance the chaser’s phase relative to the target. Therefore,
we expect that fast-intercept maneuvers will require thrust
angles between 180� and 360�. These predictions will be
revisited in Sec. IV A when some sample solutions are
examined.

B. The relationship between control parameters and
trajectory parameters

Following the engine burn that propels it onto an intercept
trajectory, the chaser will follow a path that is described by:

rc hcð Þ ¼ r0

1þ � cos /ð Þ
1þ � cos hc þ /ð Þ

� �
; (1)

where � is the eccentricity of the orbit and / is the phase
angle. Textbook descriptions of elliptical orbits typically

Fig. 1. The coordinate system used in this problem, showing the target with

angular coordinate ht on a circular orbit of radius r0. The chaser has radial

coordinate rc and angular coordinate hc at some time t following the inter-

cept maneuver. The angular positions of all craft are measured counter-

clockwise from the chaser’s original position. The phase angle of the ellipse,

/, is the angle of the major axis of the chaser’s elliptical orbit and is mea-

sured in the clockwise sense. The initial thrust vector of the chaser is shown

at the right along with the resultant velocity vector.
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present this expression with the numerator being simply r0.
The modified form (1) is required so that the chaser has a
radius of r0 at hc ¼ 0, as required by the initial conditions.

The eccentricity � and orbital phase angle / can be related
to the control parameters d and a, as derived in the
Appendix. These relationships are

�¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 að Þð1þ dcos að ÞÞ2þ cos2 að Þð2þ dcos að ÞÞ2

q
;

(2)

and

tan /ð Þ ¼ tan að Þ 1þ d cos að Þ
2þ d cos að Þ

� �
: (3)

When � < 1, the semi-major axis of the chaser’s elliptical
path is denoted as a. Then, the maximum radial excursion
(apogee) is ð1þ �Þa, which occurs when hc þ / ¼ p. It fol-
lows from Eq. (1) that a ¼ r0ð1þ � cos ð/ÞÞ=ð1� �2Þ. The
period of the chaser’s elliptical orbit can be calculated from
Kepler’s third law, T2

c ¼ ð4p2=GMÞa3, and expressed in
terms of problem parameters as

Tc ¼ T0

1þ � cos /ð Þ
1� �2

� �3=2

: (4)

The normalized period (Tc=T0) is plotted as a function of a
in Fig. 2 for a range of d. The orbital period relationship will
enter the generalized intercept condition in Sec. III when
accounting for the time required for the chaser to complete
multiple orbits.

III. DERIVATION OF THE GENERALIZED

INTERCEPT CONDITION

In general, the chaser could complete two thrust maneu-
vers. The first is the thrust required for interception, which is
the condition that the chaser and target are coincident in

space and time. The second is the thrust required for rendez-
vous, wherein the chaser matches the target’s velocity.
Obviously, the second maneuver would not be applicable in
the case of an intentional collision, as with the DART mis-
sion. The thrust required for rendezvous is easily found once
the intercept problem is solved. The interception problem is
more difficult and is the focus of this section.

The intercept condition is determined as follows: Analysis
of the radial coordinate determines where the orbits intersect,
and therefore, the locations at which intercept can occur. The
angular positions of the target and chaser are then expressed
as functions of time. The intercept condition is found by
requiring that the two craft have the same angular position
(modulo 2p), which must also occur at one of the two points
where the orbits intersect.

A. The radial intersection condition

While it is possible to draw an ellipse and a circle that
intersect at four locations, the chaser’s elliptical orbit can
intersect the target’s circular orbit at a maximum of two
locations since the center of the target’s orbit must coincide
with one of the ellipse’s foci, as illustrated in Fig. 1. This is
readily proven by requiring the radial position of the chaser
(rc) be equal to that of the target (r0) and solving for the
angular position of the intersection, denoted as hx. Using Eq.
(1) with rc ¼ r0 provides the radial intersection condition
cos ðhx þ /Þ ¼ cos ð/Þ, from which two families of solutions
emerge. The obvious solution that hx ¼ 2p was the focus of
the analysis in Ref. 5. The second intersection solution is

hx ¼
2p� 2/ 0 � / < p;

4p� 2/ p � / < 2p;

(
(5)

where hx is limited to the range ½0; 2pÞ. This expression for hx

can be thought of as a function of / or as a function of a
(when d is specified) through the relationship between / and a
described in Eq. (3). Both of these forms are shown in Fig. 3.

B. The angular equations of motion

Unlike the Lambert problem where time is an explicit con-
straint, time is not specified in this problem and will

Fig. 2. The normalized orbital period of the chaser as a function of a calcu-

lated using Eq. (4). The maximum value of the normalized orbital period for

a normalized thrust of d ¼ 0:40 is about 125 at a ¼ 0�, corresponding to an

eccentricity of 0.96, which shows that this case is approaching an unbound

orbit.

Fig. 3. The intersection angle of the two orbits, hx, is plotted against /
(black dashed) and a (solid orange) for the case of d ¼ 0:20. The very weak

dependence of / on d means that the hx vs a curves shown here can be taken

as representative for a broad range of d.
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therefore be algebraically eliminated. As the target travels in
uniform circular motion, its angular position evolves in time
as

ht tð Þ ¼ h0 þ x0 t: (6)

There is no corresponding analytic expression for the chas-
er’s angular position as a function of time. However, it is pos-
sible to describe the inverse relationship for the chaser (time as
a function of the angular position). This relationship can be
derived from the specific angular momentum of the chaser,
lc ¼ r2

c
_hc, which is a constant of the motion after the engine

burn. This equation can be solved for time as a function of the
chaser’s angular position by expressing rc in terms of h using
Eq. (1), separating the angular and time variables, and integrat-
ing between the initial and final coordinates. Doing so yields

t ¼ T0

1þ � cos /ð Þð Þ3=2

2p

ðhc

0

dh

1þ � cos hþ /ð Þð Þ2
; (7)

where the expression has been simplified using x0 ¼ v0=r0

and lc ¼ r0v0ð1þ � cos ð/ÞÞ1=2
, which is an alternate form

for lc that is presented in Eq. (A6) of the Appendix.
Critically, the chaser’s angular position appears as the upper
limit of the integral. This result is valid for any final angle
and for any values of � and /, which means that parabolic
and hyperbolic paths are also potential intercept trajectories.

Evaluated at hc ¼ 2p, the integral in Eq. (7) is equal to
2p=ð1� �2Þ3=2

, which reproduces the chaser’s orbital period
given in Eq. (4). If the chaser completes more than one orbit,
its angular coordinate can be expressed as hc ¼ 2pnc þ h0c,
where nc 2N counts the number of whole orbits and
h0c 2 ½0; 2pÞ. Therefore, the time required to travel the total
angular distance is then nc times the orbital period plus the
remainder described in Eq. (7) evaluated at h0c. That is,

t ¼ ncTc þ
1

x0

1þ � cos /ð Þð Þ3=2

�
ðh0c

0

dh

1þ � cos hþ /ð Þð Þ2
: (8)

The integral can be evaluated numerically or analyti-
cally.3,16,17 The analytic solution is presented here for the
sake of completeness. Defining the second term on the RHS

of Eq. (8) as Iðh0c; �;/Þ=x0, the analytic expression for this
integral is

I h0c; �;/
� �

¼ 1þ � cos /ð Þ
1� �2

� �3=2

q h0c þ /
� �

� q /ð Þ
� �

;

(9)

where the new quantity, q, is given by

q zð Þ ¼ w zð Þ � � sin ðw zð ÞÞ; (10)

which itself depends on another quantity w,

w zð Þ ¼ 2 tan�1

ffiffiffiffiffiffiffiffiffiffiffi
1� �
1þ �

r
tan

z

2

� � !
: (11)

Equations (9)–(11) are collectively known as Kepler’s equa-
tion. They have the advantage that they do not require any

numerics, but they are rather complicated and their physical
origin is not very transparent. When using these equations,
care must be taken to enforce continuity in w as the inverse
tangent function jumps between þp=2 and �p=2 when z
passes through p. Additionally, the RHS of Eq. (8) is
described using only Iðh0c; �;/Þ so that readers may use their
preferred method for evaluating the integral.

As was done for the chaser, the angular position of the
target can be described as a multiple of 2p plus a remainder
using ht ¼ 2pnt þ h0t, where nt 2N and h0t 2 ½0; 2pÞ. Using
this form for the angular position of the target and elimi-
nating time in Eq. (6) by replacing it with the RHS of Eq.
8 gives

2pnt þ h0t ¼ h0 þ ncx0Tc þ I h0c; �;/
� �

: (12)

This equation describes the angular position of the target as a
function of the angular position of the chaser.

C. The intercept condition

The intercept condition is realized when the angular coor-
dinates of the target and chaser are the same and also at an
orbital intersection point, that is, h0t ¼ h0c ¼ hx. Imposing
these constraints in Eq. (12) yields the generalized intercept
condition,

2pnt þ hx ¼ h0 þ ncx0Tc þ I hx; �;/ð Þ: (13)

It is important to note that, unlike Eq. (12) which is true for
any values of a and d, Eq. (13) is true only for particular val-
ues of these parameters, since intercept requires precision
coordination of the target and chaser. The intercept problem
is solved with the discovery of particular values of a and d
that satisfy Eq. (13). In analyzing this problem, it must be
recalled that � and / are functions of a and d through Eqs.
(2) and (3), respectively, and hx is a function of / through
Eq. (5).

We briefly pause to consider how Eq. (13) should be inter-
preted. The origin of this equation is Eq. (6), which describes
the angular position of the target as a function of time. The
second and third terms on the RHS of Eq. (13) represent the
time (multiplied by x0) required for the chaser to travel to an
intersection point of the orbits. Therefore, the RHS repre-
sents the actual angular position of the target when the
chaser is at an orbital intersection point hx. The LHS should
be interpreted as the goal of having the target also at the
same intersection point. It is worth noting that limiting
the solution space to hx ¼ 0 eliminates the second term on
the LHS and the integral term on the RHS, which reproduces
Eq. (18) of Ref. 5 that describes the intercept condition for
the first family of solutions.

IV. SOLUTIONS FOR THE SECOND FAMILY

OF INTERCEPT LOCATIONS

This search for intercept solutions proceeds by treating a
as the sole unknown control parameter, taking the normal-
ized thrust, d, as specified. Phrased as a question, the inter-
cept condition asks “For what values of a is Eq. (13) true
when d is specified?” Due to the transcendental nature of Eq.
(13), solutions cannot be found analytically; they can be
found by scanning through all possible values of a and iden-
tifying those values which satisfy Eq. (13).
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A. Intercept solutions

Figure 4 presents two fast-intercept solutions
(nc ¼ nt ¼ 0) for d ¼ 0:04 and d ¼ 0:40, as representative
cases. The normalized thrust used in the second case should
be considered a strong thrust as it is close to the limit
descape ¼

ffiffiffi
2
p
� 1 � 0:41 for escape from orbit due to a for-

ward thrust maneuver. Both cases assume initial conditions
where the target leads the chaser (h0 > 0), though it should
be noted that negative values of h0 would also be perfectly
acceptable. The thin blue curves in Fig. 4 represent the RHS
of Eq. (13), the actual position of the target when the chaser
is located at a crossing of the orbits (hx). The thick orange
lines represent the LHS of Eq. (13), the angular location of
the orbital intersection. Notably, it seems that these fast-
intercept solutions require a > 180�, and it is clear that
larger values of d achieve intercept more quickly (in agree-
ment with the predictions of Sec. II A). The trajectories for
these two fast-intercept solutions are presented in Fig. 5.
Notably, the second solution with d ¼ 0:40 will grossly
overshoot the target if there is not a rendezvous maneuver or
collision with the target.

Figure 6 illustrates the solution space for the generalized
intercept condition when d ¼ 0:39 and h0 ¼ 15�, allowing

for multiple orbits of the chaser and target. The value of d
¼ 0:39 was chosen for its relevance to the sensitivity analy-
sis discussed in Sec. IV B. Intercept solutions with h in the
range of 0�–360� are the fast-intercept solutions with nt¼ 0,
whereas those above 360� are multi-orbit solutions with
nt¼ 1. Table I lists the numerical values for these intercept
solutions.

B. Sensitivity to variations in a

Trajectory corrections are almost always needed in real
missions to compensate for guidance errors, mechanical
inaccuracies, and measurement uncertainties. A trajectory is
considered efficient and stable as long as required correc-
tions are much smaller than primary mission maneuvers. The
Cassini–Huygens mission, for example, was designed with a
deep-space maneuver (DSM) Dv of approximately 450 m/s,
along with many smaller trajectory correction maneuvers
(TCMs), all of which were less than 10% of the primary
thrust.18 The use of small corrections is only possible when
the trajectories are relatively insensitive to errors in the ini-
tial thrust vector.

The following sensitivity analysis considers only the effect
of variations in the angular control variable, a, though a

Fig. 4. The thick orange curves represent the LHS of Eq. (13), and the thin blue curves represent the RHS of that equation for (a) d ¼ 0:04 and (b) d ¼ 0:40.

The initial angular separation is h0 ¼ 15� in both cases. The numerical values next to each crossing identify (a, h): the thrust angle which solves the fast-

intercept problem, and the angle at which intercept occurs.

Fig. 5. Strobe-effect illustration of the trajectories of the chaser (orange, thick) and the target (blue, thin), plotted at 20� increments of the target, for the inter-

cept solutions identified in Fig. 4 for (a) d ¼ 0:04 and (b) d ¼ 0:40. The black dotted line between the points identifies position pairs at equal intervals of time.

The black dots interior to the orbits identify the center of force.
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similar analysis could be conducted for variations in d.
With the first family of intercept solutions analyzed in
Ref. 5, it was straightforward to search for optimal (stable)
solutions because a only appeared in the RHS of the inter-
cept condition. Proving the existence of stable solutions
amounted to showing that, for some intercept solutions, the
derivative of the RHS of the intercept condition with
respect to a is zero. This led to the conclusion that perfectly
forward or reverse thrusts are optimal for this first family of
solutions.

For the generalized intercept condition, an analytic treat-
ment of stability is much more difficult on account of the
many ways in which both the LHS and RHS of Eq. (13)
depend on a. Instead of mathematically proving the exis-
tence of stable solutions, the intercept solutions identified
in Fig. 6 are inspected for their sensitivity to small variations
in a. In particular, the boxed region in Fig. 6 is expanded in
Fig. 7, showing that the two curves are tangent to each other
for intercept solution b. Thus, the existence of stable solu-
tions for the generalized intercept condition is proved via
example, though it is not yet known whether stable, fast-
intercept solutions exist.

Stability analysis must also take into account the steepness
of the curves’ slopes in the vicinity of the solution. As an
example, assume that a mission can tolerate a deviation of 1�

between the positions of the craft. Figure 7 shows that a 1�

output error arises from a 65� input error for this solution,
corresponding to a sensitivity ratio (output variation/input
variation) of about 0.2. In contrast, intercept solutions c–g
from Fig. 6 have sensitivity ratios of order 10 and would,
therefore, be unlikely candidates for an intercept mission.
Interestingly, solution a has an impressive sensitivity ratio of
about 0.5 despite the fact that the curves are not tangent at
the solution point, a result of the relatively weak gradients in
this vicinity. Even if the curves cross, low-sensitivity solu-
tions can still arise if the crossing is near one curve’s inflec-
tion point as in Fig. 4(a).

V. RENDEZVOUS

The thrust required for rendezvous can be derived from the
equations of motion or from symmetry arguments, both of
which are described here. The chaser’s velocity components
are given in Eqs. (A1) and (A2) from the Appendix. Evaluating
the azimuthal velocity component at the intersection angle
described in Eq. (5) results in vc;h ¼ v0 þ Dv cos ðaÞ, which is
the same as the initial state. Evaluation of the radial component
of velocity gives vc;r ¼ �Dv0 sin ðaÞ, which means that the
radial velocity at interception is exactly opposite to the initial
radial velocity. The same conclusion can be surmised from the
symmetry of the problem using Fig. 1, where the velocity com-
ponents have the same magnitude and the radial component
must have changed sign. It follows that the rendezvous maneu-
ver at the second family of intercept locations requires a thrust
of magnitude Dv directed at an angle of p� a.

VI. CONCLUSIONS

Implementing a fuel constraint (a specified Dv) in the
intercept problem offers pedagogical advantages compared
to the Lambert problem: a constant magnitude thrust vector
with a variable direction is easier to visualize than the fixed
time-to-interception formulation. The analysis presented in

Fig. 6. The thick orange curves represent the LHS of Eq. (13), and the thin

blue curves represent the RHS of that equation for d ¼ 0:39 and h0 ¼ 15�.
The points labeled a–g are all possible solutions occurring before the target

has completed two full orbits. The dashed box indicates the parameter range

shown in Fig. 7.

Table I. List of numerical values for the solutions presented in Fig. 6.

Figure 6 tag nt nc a hx ht hc

a 0 0 317� 56� 56� 56�

b 0 1 186� 355� 355� 715�

c 1 0 76� 230� 590� 230�

d 1 1 113� 95� 455� 455�

e 1 1 266� 198� 558� 558�

f 1 2 236� 295� 655� 1015�

g 1 3 196� 348� 708� 1428�

Fig. 7. Intercept solution b identified in the dashed box of Fig. 6. The gray

bands identify the range of a for which the target and chaser have an angular

separation of 1� or less around the ideal intercept location, resulting in an

allowable uncertainty on a of about 5�.
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this work extends the intercept problem that was introduced
in Ref. 5 by analyzing solutions occuring at the second fam-
ily of intersection locations. The culmination of this work is
Eq. (13), which is the most general statement of the intercept
condition for this problem.

In addition to presenting a general intercept condition that
allows intercept locations to be calculated, this work has
shown how fast-intercept solutions (occurring before the tar-
get has completed one full orbit) can be calculated. The exis-
tence of solutions that are stable with respect to variations in
a was proven through an example with d ¼ 0:39 and
h0 ¼ 15�. It is not known whether there exist low-sensitivity
fast-intercept solutions or whether there exist intercept
solutions that are simultaneously insensitive to variations in
both a and d. There are, of course, many other rich and chal-
lenging problems that could be further examined using the
framework and analytical methods described here, including
a mathematical expression for the stability of solutions to the
generalized intercept condition, the existence of low-
sensitivity fast-intercept maneuvers, initial orbits that are not
circular, and initial conditions that are not co-orbital.
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APPENDIX: DERIVATION OF THE EQUATIONS

FOR � AND /

This derivation of the equations for � and / in terms of the
control parameters, d and a, follows the logic presented in
Ref. 5. Two equations of constraint are developed and
merged to derive these key relationships. One constraint
emerges from kinematics and angular momentum, and the
other from conservation of total energy. At t¼ 0, after the
engine burn has been completed, the mass, angular momen-
tum, and total energy of the chaser are constants of the
motion. Since any function of these quantities must also be a
constant of the motion, the following analysis considers the
specific angular momentum and the specific total energy,
being the angular momentum and total energy divided by the
mass. The specific angular momentum is lc ¼ rvh. Referring
to the velocity components described in Fig. 1, it follows
that lc ¼ r0 v0ð1þ d cos ðaÞÞ immediately after the engine
burn has concluded. This constant of the motion can be used
with Eq. (1) to solve for the azimuthal velocity through
vh ¼ lc=r, which gives

vc;h ¼ v0ð1þ d cos aÞð Þ 1þ � cos hc þ /ð Þ
1þ � cos /ð Þ : (A1)

An expression for the radial velocity can be derived using
the chain rule in Eq. (1), vr ¼ ðdr=dhÞ _h ¼ ðdr=dhÞðvh=rÞ,
together with the prior result to give

vc;r ¼ v0ð1þ d cos aÞð Þ � sin hc þ /ð Þ
1þ � cos /ð Þ : (A2)

The first constraint is found by taking the ratio of the
radial and azimuthal velocities, using Eqs. (A2) and (A1),
and equating this to the ratio of velocities from the initial
conditions as depicted in Fig. 1. This yields

� sin /ð Þ
1þ � cos /ð Þ ¼

d sin að Þ
1þ d cos að Þ : (A3)

The second constraint results from consideration of the spe-

cific total energy of the chaser, ec ¼ 1
2
ðv2

c;r þ v2
c;hÞ � GM=r,

which can be calculated using the prior results. Noting that
Newton’s second law analyzed for the target on its circular

orbit gives GM ¼ r0v2
0, we have

e ¼ 1

2

v2
0

ð1þ � cos /ð ÞÞ2
�
�2 � 1þ 2�ð 1þ d cos að Þð Þ2

� 1þ � cos /ð Þð ÞÞ cos hþ /ð Þ
�
: (A4)

Equation (A4) must actually be independent of angle in order
for e to be a constant of the motion. Therefore, the coeffi-
cient of the cos ðhþ /Þ must be identically zero. This yields
the second constraint,

1þ � cos /ð Þ ¼ 1þ d cos að Þð Þ2: (A5)

This result also allows the specific angular momentum of the
chaser to be expressed as

lc ¼ r0v0 1þ � cos /ð Þð Þ1=2: (A6)

Finally, the two constraints, Eqs. (A3) and (A5), can be
combined to solve for � and /. These expressions are

�¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 að Þð1þ d cos að ÞÞ2þ cos2 að Þð2þ d cos að ÞÞ2

q
;

(A7)

and

tan /ð Þ ¼ tan að Þ 1þ d cos að Þ
2þ d cos að Þ : (A8)

Useful reference points for characterizing the scale of � are
its minimum and maximum values. The minimum of Eq.
(A7) is � ¼ d, which occurs at a ¼ 90� and 270�. A maxi-
mum of � ¼ dð2þ dÞ occurs at a ¼ 0� and 180�. It was
shown in Ref. 5 that / has very weak dependence on d, such
that the approximation tan ð/Þ ¼ 1

2
tan ðaÞ is accurate to

within 0:5� for d � 0:05.
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