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The problem of rendezvous, the meeting of spacecraft in orbit, is an important aspect of mission

planning. We imagine a situation where a chaser craft, initially traveling on the same circular orbit

as its target and separated from it by a known distance, must select an initial thrust vector that will

allow it to meet the target (interception) followed by a second thrust vector that will allow it to

match velocities with the target (rendezvous). The analysis presented here provides solutions to

this problem in simple algebraic forms while offering many rich challenges that support intuition-

building exercises for students across a range of skill levels. An html-javascript orbit calculator is

made available with this manuscript as a supporting visual aid and can be used to test the analysis

and explore the consequences of different orbital intercept solutions. # 2021 Published under an exclusive
license by American Association of Physics Teachers.

https://doi.org/10.1119/10.0003489

I. INTRODUCTION

In his book Carrying the Fire, former Apollo 11 astronaut
Michael Collins discusses the counter-intuitive process
required for rendezvous in orbit. For example, to close a gap
with a target directly ahead, pilots must slow their craft to
drop into a lower altitude orbit that advances their angular
position relative to the target.1 As we will see, this maneuver
is just one of many possible solutions to the interception
problem. Collins describes in great detail the extensive train-
ing undertaken to make such situations second nature,
including countless hours in mock-ups and simulators, the
meticulous study of equipment, and the rehearsal of proce-
dures for both planned and contingent operations. In prepara-
tion for the Apollo 11 mission, Collins trained for no less
than eighteen different cases for rendezvous of the modules,
since co-planar conditions could not be guaranteed. Prior to
the lunar landing of Apollo 11, the Apollo 10 mission com-
pleted a lunar orbit wherein the astronauts conducted a co-
planar rendezvous of the lunar module and the command and
service module.

Between the earliest docking maneuvers of the Gemini
and Apollo missions and the present, there have been many
such feats, under diverse conditions and with a wide range of
craft, both manned and unmanned. The first unmanned
docking event took place in 1967 between two variants of
the Soviet Soyuz spacecraft.2 SpaceX successfully docked
its Crew Dragon Module with International Space Station
(ISS) twice in 2020, and the Chang’e 5 robotic probe landed
on the lunar surface and returned to orbit where it docked
with and transferred lunar rock samples to the orbit-return
vehicle. In most of these scenarios, one of the craft (e.g., the
ISS) is on an unpowered trajectory and is considered the tar-
get, while the other craft, being capable of active trajectory
modification (e.g., the Crew Dragon Module), is considered
the chaser. For missions to the ISS, transition onto the tar-
get’s orbit for a docking maneuver typically involves initial
insertion of the chaser into a holding orbit, often with a two-
stage transfer through an intermediate phasing orbit, all of
which is typically completed close to the orbital plane of the
target.3,4 A Hohmann transfer or bi-elliptic maneuver is often
used to intercept the target. The total time for completing the

rendezvous and docking of manned spacecraft with the ISS
can be less than one day to as much as two days.3

Intermediate-level classical mechanics textbooks discuss
orbital dynamics, but the mechanics of orbital intercept and
rendezvous are notably absent from such discussions, which
often include little more than a brief discussion of the
Hohmann transfer.5–8 Advanced, discipline-specific texts
focusing on orbital dynamics often couch these discussions
in the language of differential equations and three-
dimensional vectors, resulting in a complete but complicated
analysis that is quite challenging for undergraduate
students.4,9–11 The approach taken in this paper differs in
that it avoids using differential equations4,9,10,12–14 and
instead focuses on geometric considerations.15,16 By reduc-
ing the mathematical overhead, it emphasizes other impor-
tant aspects of the general problem-solving framework,
including the definition and mathematical interpretation of
the intercept and rendezvous conditions, motion on elliptical
orbits, the role of conserved quantities, and the utility of
approximate solutions.

The central goal of this analysis is the discovery of the
thrust vector for the chaser, defined in terms of a magnitude
and angle that will enable it to intercept the target.
Rendezvous is a second condition wherein the craft are at
the same location and have matched velocities.9 This analy-
sis is restricted to co-orbital initial conditions that do not
represent the situation of most intercept and rendezvous
maneuvers, though this situation might arise, for example,
when relocating craft that were placed in co-orbital trajec-
tories for prior purposes or for practice of orbital maneuvers
as was done on the Apollo 10 mission. Within these limita-
tions, the analysis presented here seeks all possible solu-
tions for orbital intercept given co-orbital initial conditions,
including solutions of multiple and disparate number of
orbits between the two craft. Simulations were and continue
to be an important aspect of flight training,1 and when used
appropriately, allow the user repeated opportunities to
apply theory to complete specific tasks. An auxiliary
html-javascript orbit calculator accompanying this paper
provides a visual aid that can be used to explore the conse-
quences of various trajectory changes, including sensitivity
to control parameters.
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In Sec. II, we provide a mathematical definition of the spe-
cific problem being solved, then examine the details of the
orbital characteristics of the target and chaser in Sec. III,
completing the setup with a definition of the conditions
required for interception in Sec. IV. We then examine a
range of intercept solutions in Sec. V, consider sensitivity to
control parameters in Sec. VI, analyze the rendezvous
maneuver in Sec. VII, and conclude in Sec. VIII. The
Appendix complements the body of the work and presents a
derivation of the approximate form for the thrust magnitude
used in Sec. VI.

II. DEFINITION OF THE PROBLEM

Our problem can be split into two main parts: trajectory
modification by an impulsive velocity change that allows the
chaser to intercept the target (the intercept problem), fol-
lowed by a second impulsive maneuver that matches the
velocities of the two spacecraft (the rendezvous problem).
Most of the analysis is focused on the more difficult problem
of intercept, which can be succinctly stated as follows: given
two craft that are initially co-orbital on circular orbits and
separated by a known distance, we seek the thrust vector of
the impulse that will allow the chaser to intercept the target
by placing the two craft at the same location at the same
time. For simplicity, we assume that the change in velocity
induced by the engines of the chaser occurs over a time scale
so much shorter than the orbital time scales that the engine
burn can be considered effectively instantaneous.

We use a fixed coordinate system with the origin at the
center of force (the planetary center), as shown in Fig. 1,
with the thrust vector defined in Fig. 2. Mathematical formu-
las will express angles in radians, whereas the figures express
angles in degrees, the traditional style of navigation. In the
following, the subscript “t” identifies the target variables and
the subscript “c” identifies the chaser variables. Given ini-
tially co-orbital and circular orbits of the craft with initial
conditions

ht;i ¼ h0; (1)

hc;i ¼ 0; (2)

rt;i ¼ rc;i � r0; (3)

where h0 and r0 are known, the intercept problem presented
here seeks solutions for the thrust angle a and normalized
thrust magnitude d ¼ Dv=v0, where v0 is the initial speed of
the craft and Dv is the magnitude of the change in velocity,
such that the following final conditions are satisfied at some
unknown final time tf:

ht;f ¼ hc;f ðmodulo 2pÞ; (4)

rt;f ¼ rc;f ¼ r0: (5)

The last equality in Eq. (5) follows from the fact that the tar-
get stays on a circular orbit. The rendezvous problem that
concludes this analysis seeks the thrust vector that recircular-
izes the orbit of the chaser such that its velocity matches that
of the target upon interception.

III. DESCRIPTION OF THE ORBITS

In this section, we derive expressions for the orbital period
of each craft and equations for the parameters describing the
elliptical trajectory of the chaser, being the orbital eccentric-
ity �, and the orbital phase angle /, in terms of the control
parameters a and d. Any change in velocity of a craft on a
circular orbit, except for a complete reversal of the velocity,
will cause it to transition onto an elliptical orbit. While it is
possible that this new elliptical orbit can have the same
orbital period as the original circular orbit, in general, they
are not equal. This difference in orbital period means that the
elliptical orbit, when chosen correctly, serves as a phasing
orbit3,9 that allows the chaser to intercept the target.

To derive expressions for the orbital periods, we recall
that Kepler’s third law relates the square of the period to the
cube of the semi-major axis a. The semi-major axis of the
target, which remains on a circular orbit, is just the radius of

Fig. 1. Definition of the coordinate system used in this analysis, where the

target remains on a circular orbit defined by radius r0 with an angular posi-

tion of ht, and the chaser moves on an elliptical orbit defined by radial posi-

tion rc and angular position hc. Note that the angular coordinates for the

craft are measured in the counter-clockwise direction, whereas / is mea-

sured in the clockwise direction.

Fig. 2. Definition of the thrust vector in terms of the thrust angle a and mag-

nitude Dv. Note that a is measured in the clockwise direction.
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orbit r0. To find the semi-major axis for the chaser, we first
consider the shape of the chaser’s elliptical orbit, which is
described by

rcðhcÞ ¼ r0

1þ � cos /ð Þ
1þ � cos hc þ /ð Þ ; (6)

where the form of the numerator has been chosen so that
rcð0Þ ¼ r0, as required by the initial conditions stated in Eqs.
(2) and (3). By comparing the definition of apogee, rapogee

¼ að1þ �Þ, to the maximum value of rc in Eq. (6), rmax

¼ r0ð1þ � cos ð/ÞÞ=ð1� �Þ, we find a ¼ r0ð1þ � cos ð/ÞÞ=
ð1� �2Þ. Expressing Kepler’s third law in terms of the ratios
of quantities for the chaser and target gives Tc=Tt

¼ ða=r0Þ3=2
, or

Tc ¼ Tt
1þ � cos /ð Þ

1� �2

� �3=2

: (7)

The absolute time scale in Eq. (7) is defined by
Tt ¼ 2pr0=v0, where v0 is the speed of the target on its circu-
lar orbit. It is often the case that the orbital radius is set by
mission-specific considerations, such as the need to remain
outside the atmosphere, energy considerations for launch,
and other goals. Hence, the speed of the craft can be inter-
preted as a dependent quantity, whose value is determined
by the radial component of Newton’s second law of motion
for the target, which provides the following relationship:

r0v
2
0 ¼ GM; (8)

where G is the universal gravitational constant, and M is the
planetary mass (taken to be a spherical object that can be
represented as a point mass at the origin).

We now derive the relationships between the parameters
describing the geometry of the chaser’s elliptical orbit and the
control parameters a and d. The azimuthal and
radial velocities can be determined from the kinematics by
referring to Fig. 2, where we see that the components of
the chaser’s velocity following engine burn are vh;i
¼ v0ð1þ d cos ðaÞÞ and vr;i ¼ v0 d sin ðaÞ. These velocities
may also be expressed in terms of the dynamical variables as
vh ¼ rc

_hc and vr ¼ ðdrc=dhcÞ _hc, where the latter is
the derivative of Eq. (6) with respect to time, considering that
the time dependence in that equation enters as hc ¼ hcðtÞ.
Equating the ratio of the dynamical velocities, evaluated at
t¼ 0, to the ratio of the kinematic velocities provides

vr

vh

����
t¼0

¼ 1

rc;i

drc

dhc

����
t¼0

¼ � sin /ð Þ
1þ � cos /ð Þ ¼

d sin að Þ
1þ d cos að Þ :

(9)

While it is tempting to infer from Eq. (9) that � ¼ d and
/ ¼ a, a second equation is needed to solve for the relation-
ships between the geometric and control variables.

The total energy is a constant of the motion and must
have the same value at perigee (minimum radius, maxi-
mum speed) and at apogee (maximum radius, minimum
speed). Due to the presence of terms with 6� in the expres-
sions for the radius and velocity at these points, we will
identify perigee with the “þ” symbol and apogee with the
“–” symbol. The maximum and minimum values of r in
Eq. (6) are

r6 ¼ r0

1þ � cos /ð Þ
16�

: (10)

The azimuthal velocity at these points, defined similarly as
v6, can be derived from the angular momentum. The specific
angular momentum following engine burn is a constant
of the motion, and can be expressed as lc ¼ r0 vh;i

¼ r0 v0ð1þ d cos ðaÞÞ. Equating the specific angular momen-
tum at apogee and perigee with the initial value gives
v6 ¼ lc=r6,

v6 ¼ v0ð1þ d cos að ÞÞ 16�

1þ � cos /ð Þ : (11)

The radial velocity at apogee and perigee is identically zero,
leading to the simple expression for the specific energy of
the chaser at these points, e ¼ Ec=mc ¼ ð1=2Þv2

6 �GM=r6.
Replacing GM with r0v2

0 (see Eq. (8)) and using the prior
equations for r6 and v6, we have

e ¼ 1

2

v2
0

ð1þ � cos /ð ÞÞ2
�
ð1þ d cos að ÞÞ2ð16�Þ2

� 2ð16�Þð1þ � cos /ð ÞÞ
�
: (12)

For the total energy to be constant of the motion, the 6 terms
in the Eq. (12) must cancel, which yields

� cos /ð Þ ¼ d cos að Þð2þ d cos að ÞÞ: (13)

We can now use the prior result together with the equality
established in Eq. (9) to solve for � sin ð/Þ

� sin /ð Þ ¼ d sin að Þð1þ d cos að ÞÞ: (14)

The ratio of Eq. (14) to Eq. (13) provides a solution for
tan ð/Þ in terms of the control parameters

tan /ð Þ ¼ tan að Þ 1þ d cos að Þ
2þ d cos að Þ : (15)

A solution for � readily follows by squaring and summing
Eqs. (13) and (14), and then taking the square root to give

�¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 að Þð1þ d cos að ÞÞ2þ cos2 að Þð2þ d cos að ÞÞ2

q
:

(16)

Solutions for � and / as a function of a for d ¼ 0:05;
d ¼ 0:10, and d ¼ 0:20 are presented in Figs. 3 and 4,
respectively. An interesting result of this analysis is that /
has very weak dependence on d, with / ¼ tan�1ð1=2 tan ðaÞÞ
as d! 0. For d ¼ 0:05, the deviation of / from this limit is
everywhere less than half of a degree.

Eccentricities for near-Earth orbital-transfer maneuvers
are typically in the range of a few percent for phasing orbits
or Hohmann transfers between orbits.3,4 The analysis in
Sec. V begins by examining comparatively large values of �
to better illustrate the relationship between the period
and shape of elliptical orbits, an important aspect of the
intuition-building component of these studies, though the
final analysis returns to a discussion of small d, and therefore
small � solutions. Beyond the technical feasibility of large
thrust maneuvers, it should be noted that an important
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consequence of using a large value of thrust that slows a
craft and places it into a low altitude trajectory is that the
craft will at some point be slowed by the atmosphere or,
worse yet, the planetary surface.

IV. TRAJECTORY INTERCEPTION

The condition that the craft have the same radial position
at interception leads to two families of solutions: the starting
position of the chaser (h¼ 0, r¼ r0), and a second location
that depends on the specifics of the chaser’s elliptical orbit, as
indicated in Fig. 1. While the following discussion examines
only the first family of intercept conditions, it should be noted
that the methods presented here can be generalized, with
some additional mathematical complexity, to the second fam-
ily of intercept conditions. Focusing on the first family of
intercept conditions simplifies the problem, because we know
that the chaser will complete an integer multiple of orbits in a
time equal to an integer multiple of its orbital period, for
which we have the exact solution given in Eq. (7).

To develop the intercept criterion given the constraint of
interception at the initial position of the chaser, we next con-
sider the angular coordinates of each craft. The angular coor-
dinate of the target on its circular orbit increases linearly in
time as

htðtÞ ¼ h0 þ xtt; (17)

where xt ¼ 2p=Tt is the angular velocity of the target in its
circular orbit. We now evaluate Eq. (17) at a final time equal
to an integer multiple of the chaser’s orbital period, that is, at
tf ¼ nc Tc where nc counts the number of orbits of the chaser.
The intercept condition follows from the requirement that
the target also be at the initial position of the chaser at this
final time, that is ht;f ¼ 2pnt, where nt counts the number of
times that the target has passed through h¼ 0. This gives us
the intercept condition

2pnt ¼ h0 þ 2pnc

�
1þ � cos /ð Þ

1� �2

�3=2

: (18)

Equation (18), together with the expressions for / and � in
Eqs. (15) and (16), are the primary equations for this work,
and will provide the main relationships for studying intercept
as a function of the control parameters in the remainder of
the analysis. The goal now is to find the values of a and d
that solve the intercept problem as formulated in Eq. (18).

We briefly discuss how Eq. (18) can be generalized to the
second family of intercept solutions. First, we note that the
symmetry of the orbit (see Fig. 1) requires that the angular
position of the second orbital intersection is equal to
2p� 2/, modulo 2p. With this information, it is possible to
define the time it takes for the chaser to reach this position as
an integral expression over its trajectory. This time can be
found by inverting the expression for the specific angular
momentum to solve for the angular velocity of the chaser,
that is, _hc ¼ lc=r2

c . Separating the differentials, we have
dt ¼ ðr2

c=lcÞ dhc, which can be integrated to derive an expres-
sion for the intercept time, to be used in Eq. (17) in much the
same way as was done for the case above. It should be noted
that the integral over dhc requires numerical integration or a
suitable approximation, since rc is a function of hc, and is
further complicated by the fact that the upper limit of this
integral is a function of the intercept angle.

V. INTERCEPT SOLUTIONS

Any value of d will enable intercept solutions if the crew
of the chaser is able to wait long enough. The following anal-
ysis will consider two approaches to our study of intercept
solutions: a case with a large value of d as an illustrative
example of the solution space, followed by comparison of
solutions for different values of d.

As a first case, we consider h0 ¼ 15� and search for the
values of a that provide interception within three orbits of
the target, by considering a large thrust maneuver with
d ¼ 0:20. Graphical representations of Eq. (18) are presented
in Fig. 5, where the LHS of this equation is represented by
the horizontal lines, and the RHS by the colored curves
(online only). An intercept solution exists at each crossing of
a curve with a horizontal line. Under the conditions consid-
ered here, there are 12 values of a that will enable intercep-
tion within three orbits of the target. Figure 6 shows the
trajectories of both craft for the a ¼ 260:1� solution,

Fig. 3. The orbital eccentricity � is calculated for d ¼ 0:20 (solid thick line,

top), d ¼ 0:10 (solid medium line, middle), and d ¼ 0:05 (solid thin line,

bottom). The dotted lines are the first order (in d) approximations for the

eccentricity, that is, � � d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðaÞ þ 4 cos2ðaÞ

q
. This produces an approxi-

mately 7% maximum error for the d ¼ 0:20 case and an approximately

1.7% maximum error in the d ¼ 0:05 case.

Fig. 4. The orbital rotation, /, is calculated as a function of the launch angle

a for d ¼ 0:20; d ¼ 0:10, and d ¼ 0:05. The black dotted curve is the limit-

ing case of d¼ 0. The differences between the curves are so small at this

scale that they are nearly indistinguishable from each other.
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illustrating how the chaser initially moves onto a lower alti-
tude trajectory and moves ahead of the target, and then onto
a higher altitude trajectory where its angular velocity slows,
allowing the target to catch up to it, arriving at the chaser’s
initial location simultaneously with the target.

A second perspective on this problem examines the allow-
able combinations of d and a when nt, nc, and h0 are pre-
scribed, effectively defining the time to interception. This is
a more challenging analysis, largely on account of the
complicated relationship between d and a that arises when
Eq. (18) is presented in terms of these variables. While it is
possible, in principle, to perform an algebraic inversion of
Eq. (18) to solve for d as a function of a, the equation that
emerges is fourth order in d and does not readily lead to new
insights. Instead, we consider the approach of a parameter
scan in d and examine the patterns that emerge.

Figure 7 presents the graphical solutions to Eq. (18), simi-
lar to Fig. 5, but with multiple curves corresponding to dif-
ferent values of d. First, we note that of the three values of d
presented, only the d ¼ 0:20 solutions are able to produce
solutions with disparate numbers of orbits for nt � 3. We
also note that the majority of solutions tend to fall between
90� and 270�, indicating thrust vectors that slow the chaser.
This should be expected since thrusts with a substantial
backward component17 will reduce the chaser’s period,
allowing it to catch up with a target that has a small, positive

initial angular separation. Another interesting pattern that
emerges is that clusters of solutions occur in the neighbor-
hoods of 90� and 270� for different values of d. While at first
this may seem like a good quality since multiple intercept
solutions are accessible, on further consideration it reveals
exactly the opposite: orbital intercept using a value of a near
90� or 270� will exhibit large sensitivity to the thrust angle.
That is, small deviations from the ideal thrust angle will
require substantial changes in d to ensure interception.
Therefore, these points are less desirable from the perspec-
tive of control systems, where we would prefer to have low
sensitivity to the thrust parameters. Section VI investigates
the issue of sensitivity to errors in the control parameters in
greater depth.

VI. SENSITIVITY TO VARIATIONS IN THE

CONTROL PARAMETERS

A full analysis of system sensitivities is an interesting sub-
ject, but necessarily involves additional mathematical treat-
ment and discussion regarding the definition of small or
tolerable variations, which places this subject beyond the
scope of this work. Instead, we motivate a simplified picture
of sensitivity through the question: what combinations of
thrust angle and thrust magnitude make for a particularly
robust intercept solution when considering small errors in a?
The answer is that low sensitivity is equivalent to the

Fig. 5. Solution space for the conditions h0 ¼ 15� and d ¼ 0:20. The open

marker for a ¼ 260:1� identifies the solution corresponding to the trajectory

plot presented in Fig. 6.

Fig. 6. Strobe-effect plot of the orbital positions of the target and chaser,

corresponding to the a ¼ 260:1� solution from Fig. 5, where the markers

indicate the position of each craft at constant intervals in time, proceeding

from dark to light. The dashed lines between the markers identify position

pairs of the target and chaser for each time point.

Fig. 7. Comparison of solution curves for Eq. (18) for different values of d.

The black box near a ¼ 90� defines the plot region of Fig. 8.

Fig. 8. Zoomed-in view of the intercept solutions in the vicinity of a ¼ 90�

for nt¼ 1 for the three different values of d presented in Fig. 7.
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statement that a curve of Fig. 7 has a small slope in the
neighborhood of a solution. This can be understood by
returning to the meaning of the curves, which is the angular
position of the target when the chaser has returned to its
starting position, as described in Eq. (18). Therefore, the
effect of a small deviation in a from the ideal intercept value
can be visualized as movement along the curve, with the ver-
tical distance between the value of ht and the intercept value
being the angular separation between the target and chaser.
It follows that curves with a small slope near the intercept
solution imply that the position of the target will not
vary greatly as a function of a. For example, Fig. 8 shows
that the d ¼ 0:05 curve has substantially lower slope than the
d ¼ 0:20 curve in the vicinity of a ¼ 90�, and will therefore
exhibit smaller variation in the difference of the angular
positions of the target and chaser, a hypothesis that can be
readily tested with the orbit calculator.

Optimal robustness against variations in a will occur
where the slope of the curve is zero at intercept, requiring
that it be tangent to one of the horizontal lines. Referring
back to Fig. 5, we observe that the d ¼ 0:20 curve has lower
slope for the nt¼ 2, nc¼ 3 solutions (compared to its other
solutions), and it seems reasonable to guess that a value of d
slightly less than 0.20 will be tangent to the nt¼ 2 line and
provide an optimally insensitive solution with respect to var-
iations in a. In the following, we examine the specific condi-
tions required for optimal insensitivity to deviations in a
from the ideal values.

The lowest sensitivity solutions require a ¼ 0� or
a ¼ 180�, an unsurprising result.18 Restricting our search to
these values, noting that cos ðaÞ ¼ 61, and rearranging Eq.
(18) we have

2pnt � h0

2pnc

� 	2=3

¼ 1 6 �

1� �2
¼ 1

1 7 �
¼ 1

1 7 d 2 6dð Þ ; (19)

where the last equality comes from using � ¼ dð2 6 dÞ, the
form of Eq. (16) under a ¼ 0� or a ¼ 180�, respectively.
Equation (19) is quadratic in d, and further details of its solu-
tion and subsequent approximations can be found in the
Appendix. Defining the LHS of Eq. (19) as f, we find the fol-
lowing two solutions for d:

d6 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffi
2� 1

f

s
� 1

0
@

1
A; (20)

where the þ solution corresponds to a ¼ 0� and the –
solution to a ¼ 180�. Noting that the solutions for dþ and d�
have the same magnitude, only one of them can be realized
for a given set of orbital nt and nc, that is, for a given value
of f. Which one of these solutions is feasible (i.e., positive)
depends on whether the value of f is greater than or less than
unity, respectively. Returning to the example noted in the
earlier discussion of Fig. 5, if nt¼ 2, nc¼ 3, and h0 ¼ 15�,
then f � 0:753 and we calculate an optimal solution of
d� � 0:181 with a ¼ 180�, in agreement with the guess pos-
ited earlier that a value slightly less than d ¼ 0:20 would be
necessary to achieve an interception that is optimally insensi-
tive to variations in a.

Finally, we use the results of the preceding analysis to find
optimally insensitive solutions for small values of d that are
more realistic of current technology and near-Earth orbits.

Low-energy intercept maneuvers allow the chaser to slowly
gain position on the target, closing the gap over multiple
orbits. This is equivalent to the statement that these low-
energy maneuvers require nc¼ nt. Under these conditions,
and when the initial angle of separation is small, a Taylor
series expansion for f becomes feasible. Following a series
of approximations, presented in full detail in the Appendix,
we find d� � h0=6pnt, or when h is measured in degrees
d� � h0=1080�nt. For the cases explored earlier where
h0 ¼ 15�, we find d� � 0:0139 for nt¼ 1, and d� � 0:00278
for nt¼ 5. These values should be contrasted with the exact
values (to three digits of significance) derived from Eq. (20)
of 0.0145 and 0.00280, showing errors of approximately 4%
and 0.7%, respectively. The orbit simulator provided with
this manuscript can be used to test these calculations and
explore the concept of sensitivity by, for example, varying
the thrust angle within a specific error range and examining
the effect on the final positions of the target and chaser for
different values of d.

VII. RENDEZVOUS

With the solutions for the thrust angles that allow the
chaser to intercept the target now in hand, the only remaining
part of the analysis is to determine what second thrust
maneuver is required to match the velocity of the chaser
with that of the target upon interception. Under the condi-
tions examined here, intercept occurs at the initial position
of the chaser (i.e., h¼ 0). Because the chaser travels on an
elliptical orbit, it follows that the chaser will have the same
velocity whenever it passes through the initial point. In order
to allow the chaser to match velocity with the target at that
moment, a thrust vector equal and opposite to that initially
provided for the intercept maneuver is necessary to recircu-
larize the orbit. It may seem disturbing that the rendezvous
maneuver for a chaser that began an intercept maneuver with
a reverse thrust (a ¼ 180�), for example, will require the
pilot to apply a forward thrust aimed directly at the target at
a moment when the two craft are already very close. It is not
surprising that nerves of steel are required in piloting space-
craft that seem to do the opposite of what our intuition tells
us is correct, a fact well described by Michael Collins and
other astronauts.

VIII. CONCLUSIONS

A number of entertaining and challenging puzzles emerge
from consideration of intercept and rendezvous maneuvers,
and there are many parts of this story that have been left
untouched in this analysis, such as the second family of pos-
sible intercept solutions that requires a more complicated
mathematical treatment. While conceptually simple, even
the reduced interception problem presented here is difficult
because it is an inherently three dimensional intersection
problem, requiring co-location in the radial and angular
coordinates, and simultaneous arrival. The goal of the reduc-
tion in complexity of the analysis presented here is to help
build physical intuition of the temporal evolution of motion
on elliptical orbits that is central to interception problem.

One of the main results of this work, naturally emerging
from the method of graphical solution, is the interpretation
of orbits in terms of sensitivity to control parameters. We
noticed that curves with small derivative with respect to a
tend to be rather insensitive to small errors in a. In contrast,
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the confluence of curves with different values of d in the
neighborhoods of a ¼ 90� and a ¼ 270�, where the slopes
are comparatively large, indicates that these are unlikely can-
didates for actual intercept and rendezvous missions given
the extreme sensitivity to a, despite being valid mathematical
solutions to the intercept problem.

The orbit calculator tool provided with this manuscript
allows users to experience the problem from the perspective
of a pilot on board the chaser craft who is in charge of
selecting the thrust angle and magnitude to complete the
intercept maneuver.19 This calculator provides a method for
checking answers derived from the analysis, such as the
remarkably simple solution of d6 � 7h0=6pnt for forward
(þ) or reverse (–) thrusts. It also allows users to observe the
consequences of various solutions and demonstrates the
importance of sensitivity studies. For example, it becomes
quickly apparent that one of the great benefits to using a
small d maneuver that takes multiple passes, as compared
to a large d maneuver that completes interception in few
orbits, is that the potential for error arising in miscalcula-
tion or misapplication of a or d is greatly diminished by
dividing that error over multiple passes that allows the pilot
time to make small corrections to fine-tune the chaser’s
intercept trajectory.
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APPENDIX: DERIVATION OF THE EXACT AND

APPROXIMATE FORMS OF d WHEN f IS

SPECIFIED

This appendix provides a detailed analysis of the solutions
for the optimal values of d at thrust angles of a ¼ 0� and
a ¼ 180�. Beginning with Eq. (18),

2pnt ¼ h0 þ 2pnc

�
1þ � cos /ð Þ

1� �2

�3=2

; (A1)

we reformulate it as

2pnt � h0

2pnc

� 	2=3

¼ 1þ � cos /ð Þ
1� �2

: (A2)

To simplify the following analysis, where we seek a solution
for the thrust magnitude which enters through �, we define
the LHS of Eq. (A2) as f ¼ f ðnt; nc; h0Þ. For the special
cases of a ¼ 0� and a ¼ 180�, the orbital eccentricity of the
chaser is

�6 ¼ d 2 6 dð Þ; (A3)

where the �þ solution corresponds to a ¼ 0� and the ��
solution to a ¼ 180�. As an aside, we note that bound
orbits require � < 1, and this form for � shows us that
the chaser will escape (i.e., become unbound) for
d �

ffiffiffi
2
p
� 1 � 0:41 for the forward thrust case, a well-

known result in orbital analysis. With these constraints,
Eq. (A2) becomes

f ¼ 1 6 �6
1� �2

6

¼ 1

1 7 �6
¼ 1

1 7 d 2 6 dð Þ : (A4)

When values for nt, nc, and h0 are specified, f is defined and
we can represent Eq. (A4) as a quadratic expression in d,
that is,

d2 6 2dþ 1

f
� 1

� �
¼ 0: (A5)

Considering separate solutions for d for the þ and – cases in
Eq. (A5) separately, and calling these dþ and d�, we find a
total of four possible solutions for d

dþ ¼ �1 6

ffiffiffiffiffiffiffiffiffiffiffi
2� 1

f

s
; (A6)

d� ¼ 1 6

ffiffiffiffiffiffiffiffiffiffiffi
2� 1

f

s
: (A7)

All solutions for d must be positive, meaning that we have to
dismiss the – solution in Eq. (A6). While physically possible,
the þ solution in Eq. (A7) is greater than unity, indicating
that the chaser craft would fully change its direction of rota-
tion, an impractical maneuver that would be both energeti-
cally and economically costly and will not be considered
further. After removing these solutions, we find that the
remaining two solutions have the same magnitude, hence we
have

d6 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffi
2� 1

f

s
� 1

0
@

1
A: (A8)

A special case set of solutions arises when we require
nc ¼ nt > 1, meaning that the gap between the chaser and
target is closed over multiple orbits in an efficient progres-
sion toward interception. Under these conditions, we can
simplify our expression for f as

f nt; nc; h0ð Þ ¼ ð1� h0

2pnt
Þ2=3: (A9)

When the initial angular separation between the craft is small
or the number of orbits is large such that h0 � 2pnt, we can
further simply the expression for f using a first order Taylor
series approximation

f � 1� h0

3pnt
: (A10)

Using this approximation for f in Eq. (A8), we have
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d6�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1

1� h0

3pnt

vuuut � 1

0
BB@

1
CCA;

�6

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1þ h0

3pnt

� �s
� 1

!
;

�7
h0

6pnt
; (A11)

where in the above steps we have used two additional first-
order Taylor series approximations to first simplify the frac-
tion inside the root and then to eliminate the square root. The
final form indicates that when h0 is positive, as was the case
in the scenarios examined in this study and described by
Collins,1 we must choose the d� solution, which is a thrust
opposite to the direction of motion. Conversely, if h0 is nega-
tive (chaser leading the target) we would use the dþ solution,
indicating a forward thrust that places the chaser on a higher
altitude orbit that increases its orbital period and allows the
target to catch up to it.
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