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The problem of rendezvous, the meeting of spacecraft in orbit, is an important aspect of mission

planning. We imagine a situation where a chaser craft, initially traveling on the same circular orbit

as its target and separated from it by a known distance, must select an initial thrust vector that will

allow it to meet the target (interception) followed by a second thrust vector that will allow it to

match velocities with the target (rendezvous). The analysis presented here provides solutions to

this problem in simple algebraic forms while offering many rich challenges that support intuition-

building exercises for students across a range of skill levels. An html-javascript orbit calculator is

made available with this manuscript as a supporting visual aid and can be used to test the analysis

and explore the consequences of different orbital intercept solutions. # 2021 Published under an exclusive
license by American Association of Physics Teachers.

https://doi.org/10.1119/10.0003489

I. INTRODUCTION

In his book Carrying the Fire, former Apollo 11 astronaut
Michael Collins discusses the counter-intuitive process
required for rendezvous in orbit. For example, to close a gap
with a target directly ahead, pilots must slow their craft to
drop into a lower altitude orbit that advances their angular
position relative to the target.1 As we will see, this maneuver
is just one of many possible solutions to the interception
problem. Collins describes in great detail the extensive train-
ing undertaken to make such situations second nature,
including countless hours in mock-ups and simulators, the
meticulous study of equipment, and the rehearsal of proce-
dures for both planned and contingent operations. In prepara-
tion for the Apollo 11 mission, Collins trained for no less
than eighteen different cases for rendezvous of the modules,
since co-planar conditions could not be guaranteed. Prior to
the lunar landing of Apollo 11, the Apollo 10 mission com-
pleted a lunar orbit wherein the astronauts conducted a co-
planar rendezvous of the lunar module and the command and
service module.

Between the earliest docking maneuvers of the Gemini
and Apollo missions and the present, there have been many
such feats, under diverse conditions and with a wide range of
craft, both manned and unmanned. The first unmanned
docking event took place in 1967 between two variants of
the Soviet Soyuz spacecraft.2 SpaceX successfully docked
its Crew Dragon Module with International Space Station
(ISS) twice in 2020, and the Chang’e 5 robotic probe landed
on the lunar surface and returned to orbit where it docked
with and transferred lunar rock samples to the orbit-return
vehicle. In most of these scenarios, one of the craft (e.g., the
ISS) is on an unpowered trajectory and is considered the tar-
get, while the other craft, being capable of active trajectory
modification (e.g., the Crew Dragon Module), is considered
the chaser. For missions to the ISS, transition onto the tar-
get’s orbit for a docking maneuver typically involves initial
insertion of the chaser into a holding orbit, often with a two-
stage transfer through an intermediate phasing orbit, all of
which is typically completed close to the orbital plane of the
target.3,4 A Hohmann transfer or bi-elliptic maneuver is often
used to intercept the target. The total time for completing the

rendezvous and docking of manned spacecraft with the ISS
can be less than one day to as much as two days.3

Intermediate-level classical mechanics textbooks discuss
orbital dynamics, but the mechanics of orbital intercept and
rendezvous are notably absent from such discussions, which
often include little more than a brief discussion of the
Hohmann transfer.5–8 Advanced, discipline-specific texts
focusing on orbital dynamics often couch these discussions
in the language of differential equations and three-
dimensional vectors, resulting in a complete but complicated
analysis that is quite challenging for undergraduate
students.4,9–11 The approach taken in this paper differs in
that it avoids using differential equations4,9,10,12–14 and
instead focuses on geometric considerations.15,16 By reduc-
ing the mathematical overhead, it emphasizes other impor-
tant aspects of the general problem-solving framework,
including the definition and mathematical interpretation of
the intercept and rendezvous conditions, motion on elliptical
orbits, the role of conserved quantities, and the utility of
approximate solutions.

The central goal of this analysis is the discovery of the
thrust vector for the chaser, defined in terms of a magnitude
and angle that will enable it to intercept the target.
Rendezvous is a second condition wherein the craft are at
the same location and have matched velocities.9 This analy-
sis is restricted to co-orbital initial conditions that do not
represent the situation of most intercept and rendezvous
maneuvers, though this situation might arise, for example,
when relocating craft that were placed in co-orbital trajec-
tories for prior purposes or for practice of orbital maneuvers
as was done on the Apollo 10 mission. Within these limita-
tions, the analysis presented here seeks all possible solu-
tions for orbital intercept given co-orbital initial conditions,
including solutions of multiple and disparate number of
orbits between the two craft. Simulations were and continue
to be an important aspect of flight training,1 and when used
appropriately, allow the user repeated opportunities to
apply theory to complete specific tasks. An auxiliary
html-javascript orbit calculator accompanying this paper
provides a visual aid that can be used to explore the conse-
quences of various trajectory changes, including sensitivity
to control parameters.
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