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Real life interception scenarios
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The plan for this talk

• Introduction & background
• A few escape velocity problems
• The Lambert problem
• Our intercept problem

• Formulating a general solution
• Formulation of the problem
• Equations of motion -> intercept conditions
• Relationship to control parameters

• Specific solutions
• Intercept at the origin
• Extension to fast-intercepts



An introductory problem: escape velocity

• What thrust is needed for a 
craft to escape from Earth?

• Let’s consider three cases:
1. direct launch from Earth
2. Parallel thrust from orbit
3. Perpendicular thrust from orbit
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An introductory problem: escape velocity

• What thrust is needed for a 
craft to escape from Earth?

• Let’s consider three cases:
1. direct launch from Earth (11.2)
2. Parallel thrust from orbit
3. Perpendicular thrust from orbit
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An introductory problem: escape velocity

• What thrust is needed for a 
craft to escape from Earth?

• Let’s consider three cases:
1. direct launch from Earth (11.2)
2. Parallel thrust from orbit (3.3)
3. Perpendicular thrust from orbit
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∆𝑣$≈ 7.9 km/s

An introductory problem: escape velocity

• What thrust is needed for a 
craft to escape from Earth?

• Let’s consider three cases:
1. direct launch from Earth (11.2)
2. Parallel thrust from orbit (3.3)
3. Perpendicular thrust from orbit (7.9)

• Next up: a challenge question
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An orbital dynamics conundrum
• All paths to r = ∞ require the same work by the engines. Equivalently, 

the total energy is a conserved quantity precisely because the work is 
path independent.

• The prior analysis indicates that a different ∆𝑣, and therefore a different  
quantity of fuel and chemical energy, is required for each path.

• It cannot be simultaneously true that the work is the same for all paths 
and yet each path requires a different chemical energy.

• The rocket equation tells us how Δ𝑣 is 
related to a change in mass of the rocket

Δ𝑣 = 𝑣678 ln
𝑚9

𝑚:

𝑚: = 𝑚9𝑒;∆</<!"#



The main event: Interception and Rendezvous

• The first question: What thrust vector 
will allow us to intercept a target?
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• The second question: What thrust 
vector will allow us to match velocity 
with the target?



The main event: Interception and Rendezvous

• The first question: What thrust vector 
will allow us to intercept a target?

• The second question: What thrust 
vector will allow us to match velocity 
with the target?

• What are your constraints?
• Interception at a specific position
• Interception at a specific time
• Interception with a given quantity of fuel
• . . . 



The Lambert problem

• The target moves on an inertial trajectory, 
so we know where it will be at time t.

• We have two constraints: the radial and 
angular coordinates at time t.

• We are looking for the thrust vector 
(magnitude & direction) that solves.

• What thrust vector will allow us to 
intercept the target at a given time?

Geometric solution (Lambert): 1761
Formal proof (Lagrange): 1788
Numerical solutions (Gauss):  1857
Robust algorithms: 1950’s
Modern improvements: ongoing



The Edlund problem

• What thrust angle will allow us to intercept 
the target when we have a specified Δ𝑣?

• The target is inertial, so its 
equation of motion is known.

𝜃=>?@6= 𝑡 = known
𝑟=>?@6= 𝑡 = known

• The chaser can actively modify 
its trajectory. We need 
𝜃A8>B6? 𝑡 &  𝑟A8>B6? 𝑡



Part 1: formulating the problem

• Intercept means that both space 
craft have the same coordinates.

• That is, we require:

𝑟chaser = 𝑟target

𝜃chaser = 𝜃target
(modulo 2𝜋)

𝜹 =
∆𝒗
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𝛼𝜃"

𝑟"
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Part 2: the equations of motion

• The target:

• The chaser:

𝑟( 𝑡 = 𝑟) (constant)

𝜃( 𝑡 = 𝜃) +𝜔)𝑡
𝑟"

𝜙

1 + 𝜖 cos(𝜙) * 2
)

+! d𝜃
1 + 𝜖 cos(𝜃 + 𝜙) *

= 𝜔)𝑡

𝑟, 𝜃, = 𝑟)
1 + 𝜖 cos(𝜙)

1 + 𝜖 cos(𝜃, + 𝜙)



Part 3: the intercept condition

• The radial condition: • The angular condition:

2𝜋𝑛% = 𝜃" + 2𝜋𝑛&
1 + 𝜖 cos(𝜙)

1 − 𝜖!
'/!

First family of 
intercept locations

Second family of
intercept locations

𝜙

𝜃 = 2𝜋

𝜃 = 2𝜋 − 2𝜙

𝜃% 𝜃& = 𝜃" + 1 + 𝜖 cos(𝜙) ! L
"

)! d 𝜃
1 + 𝜖 cos(𝜃 + 𝜙) !

!

!



𝜹 =
∆𝒗
𝒗𝟎

𝛼
𝑟"

𝜙

𝑟"
1 + 𝜖

𝜖 = 𝛿 sin! 𝛼 1 + 𝛿 cos 𝛼 ! + cos! 𝛼 2 + 𝛿 cos 𝛼 !

Part 4: relating the ellipse & control parameters

𝜖 ≈ 𝛿 sin! 𝛼 + 4cos! 𝛼

tan 𝜙 =
1 + 𝛿 cos 𝛼
2 + 𝛿 cos 𝛼

tan 𝛼

tan 𝜙 ≈
1
2
tan 𝛼



Part 5: putting it all together

2𝜋𝑛% = 𝜃" + 2𝜋𝑛&
1 + 𝜖 cos(𝜙)

1 − 𝜖!
'/!

𝜖 = 𝛿 sin! 𝛼 1 + 𝛿 cos 𝛼 ! + cos! 𝛼 2 + 𝛿 cos 𝛼 !

tan 𝜙 = tan 𝑎
1 + 𝛿 cos 𝛼
2 + 𝛿 cos 𝛼

• The intercept condition:

• The control variable relationships:

𝜃" = 15∘ 𝛿 = 0.20

!



Part 6: solution stability

• Which solutions are stable with respect to 
small variations in the thrust angle? Answer: not solutions near 𝛼 = 90∘



Part 6: solution stability

• Which solutions are stable with respect to 
small variations in the thrust angle? Answer: not solutions near 𝛼 = 90∘

So, what is the answer?



Part 6: solution stability

• Which solutions are stable with respect to 
small variations in the thrust angle? Answer: not solutions near 𝛼 = 90∘

𝜃" = 15∘ 𝛿 = 0.18 𝜃" = 15∘ 𝛿 = 0.01



Conclusions

• The field of orbital dynamics is alive 
and evolving, with new solutions to 
old problems.

• The interception & rendezvous
problems present great challenges 
for undergraduate physics students.

• Take care when formulating your 
questions, constraints, and 
conclusions!



We can also generate stable solutions for 𝛼 = 0∘

:

𝜃" = 15∘ 𝛿 = 0.166



Extension to fast intercept maneuvers

2𝜋𝑛( − 2𝜙 = 𝜃)
!

• Second family of intercept locations:

• The intercept condition:

𝜃8 = 2𝜋 − 2𝜙

+ 1 + 𝜖 cos(𝜙) * 2
)

*9:!;*< d 𝜃
1 + 𝜖 cos(𝜃 + 𝜙) *

𝜃! = 15∘ 𝛿 = 0.20

𝜃" = 15∘ 𝛿 = 0.20


