Calculations for orbital intercept & rendezvous

Eric Edlund Associate Professor Physics Department, SUNY Cortland

Ithaca College Physics Department Colloquium March 22, 2022

Real life interception scenarios

image credit: cortlandvoice.com image credit: spacenews.com

image credit: foreignpolicy.com image credit: www.smithsonianmag.com

Real life interception scenarios

image credit: cortlandvoice.com image credit: spacenews.com

Maneuvering Russian Satellite Has Everyone's Attention

by Mike Gruss $-$ July 17, 2015

image credit: foreignpolicy.com image credit: www.smithsonianmag.com

The plan for this talk

- Introduction & background
	- A few escape velocity problems
	- The Lambert problem
	- Our intercept problem
- Formulating a general solution
	- Formulation of the problem
	- Equations of motion -> intercept conditions
	- Relationship to control parameters
- Specific solutions
	- Intercept at the origin
	- Extension to fast-intercepts

An introductory problem: escape velocity 0 0

 $\frac{1}{2}m(\Delta v)^2 - \frac{GMm}{r_0}$

=

1

 $\frac{1}{2} m p_f^2$

 GMn

 $r_{\!f}$

- What thrust is needed for a craft to escape from Earth?
- Let's consider three cases:
	- 1. direct launch from Earth
	- 2. Parallel thrust from orbit
	- 3. Perpendicular thrust from orbit

An introductory problem: escape velocity

- What thrust is needed for a craft to escape from Earth?
- Let's consider three cases:
	- 1. direct launch from Earth (11.2)
	- 2. Parallel thrust from orbit
	- 3. Perpendicular thrust from orbit

$$
\frac{1}{2}m(\Delta v)^2 - \frac{GMm}{r_0} = 0
$$

$$
\Delta v = \sqrt{\frac{2GM}{r_0}}
$$

 $\Delta v_F \approx 11.2$ km/s

An introductory problem: escape velocity

- What thrust is needed for a craft to escape from Earth?
- Let's consider three cases:
	- 1. direct launch from Earth (11.2)
	- 2. Parallel thrust from orbit (3.3)
	- 3. Perpendicular thrust from orbit

$$
\frac{1}{2}m(v_0 + \Delta v)^2 - \frac{GMm}{r_0} = 0
$$

\n
$$
\Delta v = \sqrt{\frac{2GM}{r_0}} - \sqrt{\frac{GM}{r_0}} = \sqrt{\frac{2GM}{r_0}} \left(1 + \frac{1}{\sqrt{2}}\right)
$$

\n
$$
\Delta v_E \approx 3.3 \text{ km/s}
$$

\n
$$
v_0^2 = \frac{GM}{r_0}
$$

An introductory problem: escape velocity

- What thrust is needed for a craft to escape from Earth?
- Let's consider three cases:
	- 1. direct launch from Earth (11.2)
	- 2. Parallel thrust from orbit (3.3)
	- 3. Perpendicular thrust from orbit (7.9)

• Next up: a challenge question

$$
\frac{1}{2}m(v_0^2 + \Delta v^2) - \frac{GMm}{r_0} = 0
$$

$$
\Delta v = \sqrt{\frac{2GM}{r_0} - \frac{GM}{r_0}} = \sqrt{\frac{2GM}{r_0}} \frac{1}{\sqrt{2}}
$$

 v_0^2 $\frac{2}{0} =$ GM

 r_0

 $\Delta v_F \approx 7.9$ km/s

An orbital dynamics conundrum

- All paths to $r = \infty$ require the same work by the engines. Equivalently, the total energy is a conserved quantity precisely because the work is path independent.
- The rocket equation tells us how Δv is related to a change in mass of the rocket

$$
\Delta v = v_{exh} \ln \left(\frac{m_i}{m_f} \right)
$$

$$
m_f = m_i e^{-\Delta v/v_{exh}}
$$

- The prior analysis indicates that a different Δv , and therefore a different quantity of fuel and chemical energy, is required for each path.
- It cannot be simultaneously true that the work is the same for all paths and yet each path requires a different chemical energy.

- The first question: What thrust vector will allow us to intercept a target?
- The second question: What thrust vector will allow us to match velocity with the target?

- The first question: What thrust vector will allow us to intercept a target?
- The second question: What thrust vector will allow us to match velocity with the target?
- What are your constraints?

• . . .

- Interception at a specific position
- Interception at a specific time
- Interception with a given quantity of fuel

The Lambert problem

- What thrust vector will allow us to intercept the target at a given time?
- The target moves on an inertial trajectory, so we know where it will be at time t.
- We have two constraints: the radial and angular coordinates at time t.
- We are looking for the thrust vector (magnitude & direction) that solves.

The Edlund problem

- What thrust angle will allow us to intercept the target when we have a specified $\Delta \dot{\nu}$?
- The target is inertial, so its equation of motion is known. $\theta_{target}(t) =$ known $r_{target}(t) =$ known
- The chaser can actively modify its trajectory. We need $\theta_{chaser}(t)$ & $r_{chaser}(t)$

Part 1: formulating the problem

- Intercept means that both space craft have the same coordinates.
- That is, we require:

 $r_{\text{chaser}} = r_{\text{target}}$

 $\theta_{\text{chaser}} = \theta_{\text{target}}$ (modulo 2π)

Part 2: the equations of motion

• The target: $r_t(t) = r_0$ (constant)

• The chaser:

$$
r_t(t) = r_0 \text{ (constant)}
$$
\n
$$
\theta_t(t) = \theta_0 + \omega_0 t
$$
\n
$$
r_c(\theta_c) = r_0 \frac{1 + \epsilon \cos(\phi)}{1 + \epsilon \cos(\theta_c + \phi)}
$$
\n
$$
[1 + \epsilon \cos(\phi)]^2 \int_0^{\theta_c} \frac{d\theta}{[1 + \epsilon \cos(\theta + \phi)]^2} = \omega_0 t
$$

Part 3: the intercept condition

• The radial condition: • The angular condition:

$$
\theta_t(\theta_c) \stackrel{!}{=} \theta_0 + [1 + \epsilon \cos(\phi)]^2 \int_0^{\theta_c} \frac{d\theta}{[1 + \epsilon \cos(\theta + \phi)]^2}
$$

$$
2\pi n_t \stackrel{!}{=} \theta_0 + 2\pi n_c \left[\frac{1 + \epsilon \cos(\phi)}{1 - \epsilon^2} \right]^{3/2}
$$

First family of intercept locations

 $\theta = 2\pi$

Second family of intercept locations

 $\theta = 2\pi - 2\phi$

Φ

Part 4: relating the ellipse & control parameters

 $\boldsymbol{\delta} =$

 α

 r_0

 ϕ

 r_0

 $1+\epsilon$

 $\Delta \bm{\nu}$

 v_{0}

$$
\epsilon \approx \delta \sqrt{\sin^2(\alpha) + 4\cos^2(\alpha)}
$$

Part 5: putting it all together

• The intercept condition:

$$
2\pi n_t \stackrel{!}{=} \theta_0 + 2\pi n_c \left[\frac{1 + \epsilon \cos(\phi)}{1 - \epsilon^2} \right]^{3/2}
$$

• The control variable relationships:

$$
\tan(\phi) = \tan(a) \frac{1 + \delta \cos(a)}{2 + \delta \cos(a)}
$$

 $\epsilon = \delta \sqrt{\sin^2(\alpha) [1 + \delta \cos(\alpha)]^2 + \cos^2(\alpha) [2 + \delta \cos(\alpha)]^2}$

$$
\theta_0 = 15^{\circ} \qquad \delta = 0.20
$$

Part 6: solution stability

• Which solutions are stable with respect to small variations in the thrust angle? Answer: not solutions near $\alpha = 90^\circ$

Part 6: solution stability

• Which solutions are stable with respect to small variations in the thrust angle? Answer: not solutions near $\alpha = 90^\circ$

So, what is the answer?

Part 6: solution stability

• Which solutions are stable with respect to small variations in the thrust angle? Answer: not solutions near $\alpha = 90^{\circ}$

 $\theta_0 = 15^\circ$ 6 = 0.18 $\theta_0 = 15^\circ$ 6 = 0.01

Conclusions

- The field of orbital dynamics is alive and evolving, with new solutions to old problems.
- The interception & rendezvous problems present great challenges for undergraduate physics students.
- Take care when formulating your questions, constraints, and conclusions!

We can also generate stable solutions for $\alpha = 0^{\circ}$

 $\theta_0 = 15^\circ$ $\delta = 0.166$

Extension to fast intercept maneuvers

• Second family of intercept locations: $\theta_x = 2\pi - 2\phi$

• The intercept condition:

$$
2\pi n_t - 2\phi \stackrel{!}{=} \theta_0
$$

+ $[1 + \epsilon \cos(\phi)]^2 \int_0^{2\pi n_c - 2\phi} \frac{d\theta}{[1 + \epsilon \cos(\theta + \phi)]^2}$

