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Real life interception scenarios

Maneuvering Russian Satellite Has Everyone’s Attention

by Mike Gruss — July 17, 2015




The plan for this talk

* Introduction & background
* A few escape velocity problems
* The Lambert problem
* Our intercept problem

* Formulating a general solution
* Formulation of the problem
* Equations of motion -> intercept conditions
* Relationship to control parameters

 Specific solutions
* Intercept at the origin
e Extension to fast-intercepts



An introductory problem

* What thrust is needed for a
craft to escape from Earth?

* Let’s consider three cases:
1. direct launch from Earth
2. Parallel thrust from orbit
3. Perpendicular thrust from orbit
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An introductory problem: escape velocity

* What thrust is needed for a Lncavy2 =M™ _
craft to escape from Earth? 2 "o
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* Let’s consider three cases:
1. direct launch from Earth (11.2)

2. Parallel thrust from orbit
3. Perpendicular thrust from orbit

Avg = 11.2 km/s
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An introductory problem: escape velocity

» What thrust is needed for a lm(vo GMm _
craft to escape from Earth?

2GM _|GM _ ZGM
e Let’s consider three cases: 1o To

1. direct launch from Earth (11.2)
2. Parallel thrust from orbit (3.3) Avg = 3.3km/s
3. Perpendicular thrust from orbit




An introductory problem: escape velocity

 What thrust is needed for a %m(vg + Av?) — GMm _
craft to escape from Earth? "o

A 26M GM 2G6M 1
v = —_ - I
To To To 2

e Let’s consider three cases:

1. direct launch from Earth (11.2) Avg=~ 7.9 km/s
2. Parallel thrust from orbit (3.3)

3. Perpendicular thrust from orbit (7.9)

* Next up: a challenge question




An orbital dynamics conundrum

* All paths to r = e= require the same work by the engines. Equivalently,
the total energy is a conserved quantity precisely because the work is

path independent.
m;
Av = Veoxn In (E)

mf = m;e —AV/Vexh

* The rocket equation tells us how Av is
related to a change in mass of the rocket

* The prior analysis indicates that a different Av, and therefore a different
guantity of fuel and chemical energy, is required for each path.

* It cannot be simultaneously true that the work is the same for all paths
and yet each path requires a different chemical energy.



The main event: Interception and Rendezvous

* The first question: What thrust vector
will allow us to intercept a target?
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The main event: Interception and Rendezvous

. The first question What thrust vector
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* The second question: What tﬁrust
vector will allow us to match: veIOC|ty
with the target? :




The main event: Interception and Rendezvous

* The first question: What thrust vector
will allow us to intercept a target? ...

* The second question: What thru':st
vector will allow us to match velouty
with the target? :

 What are your constraints?
* Interception at a specific position
* Interception at a specific time .
* Interception with a given quantity of fﬁé‘l‘




The Lambert problem

* What thrust vector will allow us to
intercept the target at a given time?

* The target moves on an inertial trajectory,
so we know where it will be at time t.

 We have two constraints: the radial and
angular coordinates at time t.

* We are looking for the thrust vector
(magnitude & direction) that solves.

Geometric solution (Lambert): 1761

Formal proof (Lagrange): 1788
Numerical solutions (Gauss): 1857
Robust algorithms: 1950’s
Modern improvements: ongoing




The Edlund problem

* What thrust angle will allow us to interge”ﬁt
the target when we have a specified Av?

* The target is inertial, so its
equation of motion is known.

Htarget(t) = known

Ttarget(t) = known

* The chaser can actively modify
its trajectory. We need

Hchaser (t) & Tchaser (t)




Part 1: formulating the problem

* Intercept means that both space
craft have the same coordinates.

* That is, we require:

chaser = T'target

Ochaser = Htarget
(modulo 2m)




Part 2: the equations of motion

* The target: r:(t) = 1, (constant)

e

Ht(t) — 90 + (,L)Ot

1+ €ecos(¢)
14+ €ecos(6,+ ¢)

* The chaser: r.(6,) =1

Oc
[1+ € cos(p)]? j 19

o [1+ €ecos(0+ ¢)]? = @ot



Part 3: the intercept condition

* The radial condition: * The angular condition:

! 2 % do
Ht(ec) = 90 + [1 + € COS((l))] J;) [1 T+ € COS(9 + ¢)]2

1+ € cos(¢p) 3/2
1—€?

21N = O + 21N, [

® First family of
intercept locations

0 =2m

Second family of
intercept locations 0 =2 —2¢



Part 4: relating the ellipse & control parameters

1+ 6 cos(a)
2 + 6 cos(a)

tan(¢) = tan(a)

tan(¢) = %tan(a)

€ ~ 8y/sin?(a) + 4cos?(a) 1+e



Part 5: putting it all together

* The intercept condition:

1+ € cos(¢p) 3/2
1—¢€?

21TN = 0o + 21N, [

* The control variable relationships:

1+ 8 cos(a)

tan(¢) = tan(a)

N jnitial

2 + 6 COS(“) center positions

of force

e = §4/sin2(a)[1 + 6 cos(a)]? + cos2(a)[2 + & cos(a)]?




Part 6: solution stability

* Which solutions are stable with respect to

small variations in the thrust angle? Answer: not solutions near a = 90

1080

99.9




Part 6: solution stability

* Which solutions are stable with respect to

small variations in the thrust angle? Answer: not solutions near a = 90

So, what is the answer?



Part 6: solution stability

* Which solutions are stable with respect to
small variations in the thrust angle?

o

Answer: not solutions near a = 90

0y = 15° 6 =0.18 0y = 15° 6 =0.01




Conclusions

* The field of orbital dynamics is alive
and evolving, with new solutions to
old problems.

* The interception & rendezvous :
problems present great challenges :
for undergraduate physics students;

* Take care when formulating your
guestions, constraints, and
conclusions!




We can also generate stable solutions fora = 0°




Extension to fast intercept maneuvers

* Second family of intercept locations: 6, = 2n — 2¢

* The intercept condition:

Zﬂnt — 2(]’) ; 00
2TNc—2¢ do

+ [1 4+ € cos(¢)]? Jo [1+ €cos(8 + ¢)]?




