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The prisoner’s dilemma

1. Two prisoners are each given a choice:
* remain loyal and deny the accusations; or
e defect and incriminate the other prisoner.

2. The penalty for each depends on the
choices of both prisoners.

3. A question we might want to answer:
What is the best action for each prisoner?
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Introduction

Von Neumann and Morgenstern have developed a very fruitful theory of
two-person zero-sum games in their book Theory of Games and Economic Be-
havior. This book also contains a theory of n-person games of a type which
we would call cooperative. This theory is based on an analysis of the interrela-
tionships of the various coalitions which can be formed by the players of the
game,

" Our theory, in contradistinetion, is based on the absence of coalitions in that
it 1s assumed that each participant acts independently, without collaboration or
communication with any of the others.

The notion of an equilibrium point is the basic ingredient in our theory. This
notion yields a generalization of the eoncept of the solution of a two-person zero-
sum game. It turns out that the set of equilibrium points of a two-person zero-
sum game is simply the set of all pairs of opposing “good strategies.”



Qualities of a Nash equilibrium

* Players act independently and are only concerned with self-interest.

* An equilibrium is defined by a set of choices such that any deviation
in a strategy will necessarily result in a worse payoff.

* An equilibrium strategy is often a sub-optimal strategy, that is,
equilibrium does not mean that it offers the best individual outcome

or the best overall outcome for the group.
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* The question that Nash addressed was:

* Assuming both players play their best strategies, what decision can
only yield a worse payoff if a deviation is made?
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The prisoner’s dilemma — equilibrium analysis

* The question that Nash addressed was:

* Assuming both players play their best strategies, what decision can
only yield a worse payoff if a deviation is made?

* Consider penalties in the case of prisoners going to trial.

Prisoner B choices

loyal defect
loyal 2 ‘10

Prisoner A choices
defect 0 ‘ 4

!

Nash equilibrium point

WLOG, since the game is the same for both, let us
analyze from the perspective of Prisoner A.

If Prisoner B chooses to remain loyal, then Prisoner A’s
best strategy is to defect.

If Prisoner B chooses to defect, then Prisoner A’s best
strategy is to also defect.

Therefore, both prisoners should always defect.



N-person games of independent commuters

The conditions of this game:
* You can choose from multiple paths to commute from home to work.
* The commute time for each path has a function associated with it.

* Each commuter acts independently and without communication.
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N-person games of independent commuters

The conditions of this game:
* You can choose from multiple paths to commute from home to work.
* The commute time for each path has a function associated with it.

* Each commuter acts independently and without communication.

The solution space is symmetric

’ with respect to swap of commuters
ome Work . _ . o
(identical particles), so it is a system
° with many Nash equilibria.

We consider the problem in terms
of populations, not individuals.
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A simpler game: commuting with two paths

Two rules to this game:
* You can choose one of two paths to commute to school.
* There is a formula for each path to calculate the commute time.

Imagine that we have a situation with
High-capacity T, = 22 N =n;+n;=20.
bicycle path
For every person that travels path 2, the
commute time increases by 2 minutes.

Nash:
Equilibrium will be established when there

is no better choice, meaning T,=T,.

Sidewalk I;=2n,;

This happens when n;=9 and n,=11.
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travel time so each path has a
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Generalizing the problem

* Let us generalize the equation for the 3 equations for this system:
travel time so each path has a

constant and a population term. Road length/speed Congestion

T1=a1+ aznl

T, = a; + a, ny T, =|B1 [+ |B2n2

T, = By + Bom, Better roads = shorter commute = smaller «;, .
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Study the variation T, = B + [y ny
in commute times
as a function of n: =1+ B2 (N —ny)

= (B1+P2 N) — By

N=n1+”n2

T1=a1+a2n1

Ty, = By + B2n;



Solution by graphical analysis

Study the variation T, =01+ 621, e A SpECifiC example:
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Solution by graphical analysis

Study the variation T, = By + Bony * A specific example:
in commute times _ _
as a function of n: =p1+ B2 (N —nq) N =n; +n, =100
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Solution by graphical analysis

Study the variation
in commute times
as a function of ny:

N=Tl1+n2

T, = B1 + B2 ny
=p1+ B (N—nyq)

= (B1+P2 N) — By

Tl - 10 + 15 Tll

T, = 30 + 0.5 n,

Time [minutes]

140 -

* A specific example:
N =n; +n, =100 T = 62.5 minutes
T,=10+15n, = ny =35

T, = 80 — 0.5 n, ny =65

Ty

o - ————————— -
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* We now seek a formal mathematical
approach that can be generalized to
higher dimensional problems.
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Formalizing the method of solution

Our three equations are:

* We now seek a formal mathematical N =Cny +n, Unknowns
approach that can be generalized to Ty =a+ ayny
higher dimensional problems. Ty = B+ Bz

We first get organized (and set T, =T, =T):
=Gt ooy N=C0T+ 1n,+1mn,
a,=1T - a,n, — Qn, Unknowns

p1=1T - 0ny—prn;

U

N 0 1 1 T
)= )l
b1 1 0 =B/ \n




Formalizing the method of solution

We can solve for the unknowns by
calculating the inverse matrix:

e We now seek a formal mathematical
approach that can be generalized to <N> <(1> 1{ é ) <T>
= —a> nl

higher dimensional problems. ?}i 10 —B,

n,

T,=a+a, ng




Formalizing the method of solution

We can solve for the unknowns by
calculating the inverse matrix:

* We now seek a formal mathematical
approach that can be generalized to <N> (0 1 1 ) <T>
=1 —a, 0 nq
1 0 — P> n;

. . . a
higher dimensional problems. 8,
1
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Formalizing the method of solution

We can solve for the unknowns by
calculating the inverse matrix:

0 1 1 T
(1 —Qy 0 ) <n1>
1 0 —=p/ \my

* We now seek a formal mathematical
approach that can be generalized to <N>

. . . a =
higher dimensional problems. 8,
1
T, =+
At 2 azB2 B2 az
T az+fz  aztPz  az+p; N
n, | = | -£2 — ! a
1 aztfz  ax+Pfz  aztp: 1
n; a;, 1 -1 b1

az+Pfy; ax+far  axtf>

Let’s try it!




Formalizing the method of solution

* Let’s try the prior example
with N=100.

T,=10+1.5n,

Tz =30+ 0.5 n,



Formalizing the method of solution

. az B2 B2 az
* Let’s try the prior example T wife wothe ot ) N
. " _
Wlth N=100. <n1> B ar+B2 az+Br, ax+f> <a1>
n; a;, 1 -1 b1
aztfz  ax+Pfz  aztp;
T,=10+ 1.5 n,

Tz =30+ 0.5 n,
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Formalizing the method of solution

* Let’s try the prior example T 0375 025 0.75\ /100
with N=100 (m) = ( 0.25 —0.50 0.50 ) ( 10 )
' n, 0.75 050 —0.50/ \ 30
T = (0.375)(100) + (0.25)(10) + (0.75)(30)
= 62.5 minutes
T,=10+1.5n,
n, = (0.25)(100) + (—0.50)(10) + (0.50)(30)
=35
n, = (0.75)(100) + (0.50)(10) + (—0.50)(30)
= 65
T,=30+0.5n,

Level up!
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* Welcome to the 5% dimension!
e Equilibrium occurs when all possible paths have equal commute time.

Path segment times Junction Sums
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.
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Commuting from A to D with intermediate points

e Welcome to the 5" dimension!

e Equilibrium occurs when all possible paths have equal commute time.

Path segment times Junction Sums
Tap =|ay |z ngp N =nyp + nyc
‘ Tgp =|b1 |t |b2inBD N =mngp + ncp

Nap + Ncg = Ngp + Npc
We have 12 unknowns:

6 segment times Tac

6 segment populations | Tep =|01
v Equilibrium

_ Toc Typ +Tpp = Tyc + Tcp
We have 13 equations. = Tup + Toc + Top

v “TD Tep =|01 14+ |02incB
=Tyc +Tcp + Tpp

Road length/speed Congestion

Ngc + Npc = N¢p + Ncp

I
ﬁ
[N

F +

S

S S
S A




Commuting from A to D with intermediate points

* Welcome to the 5% dimension!
e Equilibrium occurs when all possible paths have equal commute time.

Path segment times Junction Sums
Tap =|ay |z ngp N =nyp + nyc
‘ Tgp =|b1 |t |b2inBD N =mngp + ncp

Nap + Ncg = Ngp + Npc
We have 12 unknowns:

. " _ -
6 segment times Tac co T Ncp

I
<
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<
N
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6 segment populations Tep ={01[+ |02 ncp -
v Equilibrium
T Tep =T T,

_ Toc =le I le, b ag T 1pp = lac + Tcp

We have 12 equations. = Typ + Tae + T
v CD Tcp =01+ [02ncB
=Tyc +Tcp + Tpp

Road length/speed Congestion



Commuting from A to D with intermediate points

* Welcome to the 5% dimension!
e Equilibrium occurs when all possible paths have equal commute time.

* There are four reasonable (non-looping) paths:

Trgp .
TaBcp e |
Tawo ~_| ™
TACD \/

N = nupp + Nyupcp + Nacp + Nacep



Commuting from A to D with intermediate points

* Welcome to the 5% dimension!
e Equilibrium occurs when all possible paths have equal commute time.

* There are four reasonable (non-looping) paths:
We have:

1 equilibrium time
+ 4 populations
=5 unknowns

We have 5 equations.

Good to go.




Welcome to the matrix

N 0 1 1 1 1 .
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Welcome to the matrix

N 0 1 1 1 1 .
a; + b 1 —(az + b2) —a; —pb> 0 N4Bp
aq + 61 + €1 = 1 —ay —(az + 52 + 62) 0 —62 NaBcD
p1+y1+06, 1 — B> 0 —(By+ v, +6,) —Y2 MAcBD
Y1+ 61 1 0 —0; —V2 —(y2 +962) Maco




Welcome to the matrix

N
a, + By
a; +6; +¢
p1+y1+ 6,
Y1+ 6;

Apply standard matrix inversion techniques:

Napp

NapcD
NacBD

Nacp

bce fade ficd (c+falce fide ficd (e+f)+h cid)(c+f)

beese fedd (a+e) f4ed (e+f)

1
—b>

—(a, + 6, +¢€,) 0

{be-ad)f

—(Bz +v2+06)

—V2

ade-bce

1
0

—5,
—V2

—(y2 + 62)

a(d+e) f+be (c+fiabc+f)

cde+a fe+b fedc fedd feted frabe+f)bele+frad (e+f)

bee4e fedd (ate) f4ed (e+f)

cde+a fe+b fe+c fe+d fescd frablc+f)sbcle+f)+ad (c+f)

(@+cte) (b+d+f)

cde+a fe+b fetc fe+d fesed frab(e+fitbele+f)rad (e+f)

(@+0)(bd+f)

cde+a fe+b fedc fesd feted frabe+f)tbcle+frad (e+f)

(b+d)(a+cte)

cde+a fe+b fetc fe+d fesed frab(e+fitbele+f)rad (c+f)

beid cha(bad)-c f

cde+a fe+b fedc fesd feted frable+f)tbele+frad (e+f)

(be-ad)f

cde+a fe+b fesc fesd feted frab(c+f)+bcle+f)+ad (e+f)

(@+c)(b+d+f)

cde+a fe+b fetc fe+d fesed frab(e+fitbele+f)+ad (e+f)

cd+f dic f+b (c+f)+a (b4d+f)

cde+a fe+b fedc fesd feted frable+f)tbcle+frad (e+f)

(@+0)(b+d)

cde+a fe+b fetc fe+d fesed frable+f+bcle+f)+ad (c+f)

(b+d)(@+c+f)

cde+a fe+b fedc fesd feted frable+f)tbcle+frad (e+f)

ade-bce

cde+a fe+b fedc fesd feted frab(e+f)tbcle+frad (e+f)

(b+d)(a+ctc)

cde+a fe+b fetc fe+d fesed frable+fi+bcle+f)+ad (c+f)

(a+0)(b+d)

cde+a fe+b fesc fesd feded frab(c+f)+bcle+f)+ad (e+f)

cdie diceb (cre)a (bidee)

cde+a fe+b fetcfe+d fesed frab(e+fitbele+f)rad (e+f)

(@+0)(bd4c)

cde+a fe+b fedc fe+d fesed frable+f)+bcle+f)+ad (c+f)

a(d+e) f+be (c+f)sab(c+f)

cde+a fe+b fedc fe+d fesed frable+fi+bcle+f)+ad (c+f)

be+d caa (bad)-c f

cde+a fe+b fedc fe+d fesed frable+fi+bcle+f)+ad (c+f)

{b+d)(@+c+f)

cde+a fe+b fesc fesd feded frab(e+f)+bcle+f)+ad (e+f)

(a+c) (b+de)

cde+a fe+b fesc fesd fesed frab(e+f)+bcle+f)+ad (e+f)

(b+d-e)(@scsf)

cde+a fe+b fedc fe+d fesed frable+fi+bclc+f)+ad (c+f)

cde+a fe+b fesc fesd feded frab(e+f)+bcle+f)rad (e+f)

cde+a fe+b fesc fesd feted frab(c+f)+bcle+f)rad (e+f)

cde+a fe+b fedc fe+d feted frable+fi+bcle+f)+ad (c+f)

cde+a fe+b fedc fe+d fesed frable+fi+bcle+f)+ad (c+f)

* This calculation was done with Wolfram Alpha.

Napp

NapcD
NacBD

Nacp

a; + b
a; +6, +¢
p1+vy:+06;

Y1+ 6,
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We have a general solution. We're done right?

* In a sense yes, but we can start to inquire about the properties of the
solution: how does the system behave under x, y or z conditions?

* The question we are going to address now is how does the commute
time vary as we change the quality of the connector road?

I'pc = €1+ €xpc Better connector road = smaller ¢,

/\

Road length is fixed. Can decrease congestion by road improvements.
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The Classic Braess example e\e

0.1 Nap

N = 200 a, = OO ﬁl == 30 Y1 = 30 61 == OO €1 = 0

High-capacity
freeway

Bridge

T = 30,6, N + 20,6,(B1 +v1) + (B16; + v1a3)€;
ay6, + (ap + 83)€;
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The Classic Braess example
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The Classic Braess example

€2 Npc| Connector road

N = 200 a, = OO ﬁl == 30 Y1 = 30 61 == OO €1 = O

30 0.1 Nap

High-capacity Bridge
freeway
'y 8 ~ N 1L 2%~ S (R 1A, N 1L (R S 1L/ v \c
T = -
&) . .
A decrease in congestion
. on the connector road
E (better roads) means
. longer commute times.
u
£
g
L What?
8
40 T T T T
0.0 0.2 0.4 0.6 08 10
better roads &2 worse roads




Braess’ paradox:

* From Dietrich Braess (1968) in
simulations of traffic flow.

 Commute times can be lengthened by
addition of new roads.

* Conversely, removal of roads can
decrease commute time.

Related topic: Why traffic apps make congestion worse
news.Berkeley.edu/story_jump/why-traffic-apps-make-congestion-worse
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Long roads with congestion

N=200 a =30 B, =10 y, =10 & =30 & =10

T = 20,7,(By + 682) + 2(ap +¥2)B20, + (az + B) (v, + 83)€; N
2(ay +v2)(By + 82) + (ay + By + 72 + 82)€;

2Y,(By + 83) + (v + 82)e€; o
2(a, +v2)(By + 85) + (ap + Bo + v2 + 82)e

N 26,(ay +v2) + (y2 + 62)€;
2(a; +v2)(B2 +62) + (az + B2 + 72 + 82)€;

20,(B; + 63) + (az + Br)e;
2(ay +v2)(By + 63) + (az + B2 + v, + 82)€; &

b1

26,(ay +v2) + (az + Br)e; 5
2(a; +¥2)(By + 82) + (ag + By + 72 + 82)e;
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Long roads with congestion

N=200 a =30 B, =10 y, =10 & =30 & =10

T = - N
100 ) "
Increasing congestion on the
£ ] 1 connector (larger €,) means
E longer commute times.
v 96 1
o 31
E 91 No paradox here.
g 92 - 1
S0 T T T T
0.0 0.2 04 06 0.8 10 N
better roads &2 worse roads )1

a2 VY22 VY2 T\ VP2 Y2 YA
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So where does this leave Braess” paradox?

! ™~
~ "-\-. o

L4

L - < . -
- R B e A

Sl Not always true, but can be true g
L y:
under the right conditions. £

Braess said that removing roads can
reduce commute times.



Urban experiments demonstrating the paradox

* Stuttgart, Germany

In 1969 a section of new freeway was closed and traffic immediately improved. This road
was closed permanently after this effect was observed.

Knodel W (1969). Graphentheoretische Methoden und ihre Anwendungen. Pages 57-59. Springer-Verlag.

e Seoul, South Korea

The 2003 Cheonggyecheon Restoration Project removed an elevated highway to restore a
waterway that had been built-over in earlier decades. A result of the removal of this road
was a decrease in commute times.

Easley, D and Kleinberg, J: "Networks", page 71. Cornell Store Press, 2008

* New York City

Congestion significantly improved in central Manhattan when the traffic patterns on 42"
Street were modified in 1990 and Times Square was closed in 2008.
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Why does the paradox occur?

1. Only three paths are actually used:

ABD ABCD

\\<

2. We now consider what happens if we at first
do not have a connector road, and then a
second case where the connector is added.
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Why does the paradox occur?

3. If the connector road is bad or nonexistent,
then commuters use only ABD and ACD.

For N = 200 commuters, 100 will take each path:
T =304+ 0.1x100 = 40 minutes

4. If the connector road is present (say €,=0.2)
then people cram onto the connector road to
get to work as quickly as possible.

Nagp = 60 T = 0.1(60 + 80) + 30 = 44 minutes

Napcp = 80 T = 0.1(60 + 80) + 0.2(80) + 0.1(60 + 80) = 44 minutes

Q Nycp = 60 T =30+ 0.1(60 + 80) = 44 minutes



Why does the paradox occur?

3. Ifthec The total commute time Kistent,
then cd increases by 4 minutes witha |[CD.
connector road.
For N = 2{

I'=301 " This happens because each

A |fthe d Person makes the very logical €,=0.2)
decision to minimize his/fher | " 0ad to
own commute time.

then p{
get to \

"asp ~| People will take those roads that [**

offer shorter absolute travel |4 | g0) = 44 minutes
times, resulting in greater

Macp = overall congestion. es




Remember the prisoner’s dilemma:

Prisoner A choices

Prisoner B choices

loyal defect
loyal 2 ‘10

defect 0 ‘ 4

!

Nash equilibrium point



Creating a city in the lab



Creating a city in the lab




Creating a city in the lab
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_[050e34 V24
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Creating a city in the lab

ABCD ACBD ACD

w3 \ \ /

100

—L__{95.0e-3A V2, = .

Iior = Iygp + Lupep + Lacp + lacsp

ABD: Vo =V; + Ry(Iagp + Iugcp) + V2 + Ry(Iupp + Lacsp)

ABCD: Vo =Vi + Ry(Iapp + Iupcp) + Vs + Rslypcp + Vo + Ra(lacep + lacp)

ACBD: Vo =V3+ R3(Iacp + lacep) + Ve + Relacep + V2 + Ry(Iacp + lapcp)

ACD: Vo =V3+ R3(Iacp + lacep) + Va + Ra(Uacp + Lupcp)




Creating a city in the lab

N 0 1 1 1 1 T
a; + By 1 —(ay +6;) —a; —p 0 UY:))
aq + 51 —+ €1 = 1 —a, _(az + 52 + 62) 0 —52 NaBcD
p1+v:s+06; 1 —pB> 0 —(B2 + v, +6,) —V2 MAcBD
Y1+ 01 1 0 -4, —Y> —(yy + 65) Nacp
Lot 0 1 1 1 1 Vo
V,+V, 1 —(Ry+R2) —R, —R; 0 Iypp
Vl + V4 + V5 == 1 _Rl _(Rl + R4_ + R5) 0 _R4 IABCD
Vz + V3 + V6 1 _RZ 0 _(RZ +R3 +R6) _Rz IACBD
Vs + V4 1 0 —R, —R; —(R3+R,) Lacp



Concluding remarks

* Braess’ paradox exists under specific conditions,
which have been observed in actual cities.

* Understanding why the paradox arises in this simple model works provides some
insights into human behavior and the trappings of unregulated competition.

* Agents that act independently and without communication often make collective
decisions that are sub-optimal (i.e. the prisoners).

* In this way, commuters exhibit collective behavior that is comparable to that of electrons that as
dictated by external forces and absent a sense of will to change their fate.

* Many ways to build upon this model:

 Different origins and/or destinations, fluctuations in decisions, the psychology of particular
agents and willingness to experiment, the process by which a system comes into equilibrium, etc.



Fluctuation level assuming random choices

With N=100, we found: We can say that each commuter

ascribes probabilities to each path:
T = 60 minutes

ng = 80 P1 = 0.80

We can now investigate the
fluctuations in the system, because it
is not true that a bunch of people
making independent decisions always
has this same division between paths.

T2:3n2



Fluctuation level assuming random choices

What is the expected fluctuation in the commute times? Binomial distribution:
|
This is equivalent to asking what is the probability of that E(x) = Nt pN=% px
x commuters choose path 2 if they independently make x! (N — x)!
such a decision based on these probabilities? 010
_ 0.08 -
Iy =60 Onz =Np1p2=4
00 AT, = +12 minutes
" 004
0.02
Tz == 3 nz 0.00

0 20 40 60 80 100
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What is the basis for the T, = a; + @ ,n; model?

* What is the basic assumption about travel on a road?

Distance L
Time = T, = 2
Rate (2]

* Road length doesn’t change with congestion. How does speed
change with congestion?

Let us hypothesize an -
inverse linear relationship:

v 40 1

=

1% % 30 -
0 3

V4 = $
1 1+an1 & 20 4

10

0




What is the basis for the T, = a; + @ ,n; model?

* What is the basic assumption about travel on a road?

Distance L
Time = T, = 2
Rate (2]

* Road length doesn’t change with congestion. How does speed
change with congestion?

Let us hypothesize an - The travel time is:
inverse linear relationship:

40 4

Vo

30

peed of traffic

L
T, =—(1+an,)

V4 =
1 1+ang % 0] Vg

10

0 . . . =+ a,ny




How do we make sense of this problem?

* Solve for the conditions under which Braess’s paradox holds:

* We can find the conditions under which the commute time
decreases with increasing congestion on the connector.

dT .
Set: — < () <«—| Solve for the general conditions in the

de, 10-dimensional parameter space




How do we make sense of this problem?

* Solve for the conditions under which Braess’s paradox holds:
* We can find the conditions under which the commute time

decreases with increasing congestion on the connector.

T
Set: d—< 0

de,

4

Solve for the general conditions in the
10-dimensional parameter space

Must we?




How do we make sense of this problem?

* Solve for the conditions under which Braess’s paradox holds:

* We can find the conditions under which the commute time
decreases with increasing congestion on the connector.

dT .
Set: — < 0 <«— | Solve for the general conditions in the

?
de, 10-dimensional parameter space Must we:

* We can do the social experiment:

* Find an experimental city, invest and additional S50M to add
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* Solve for the conditions under which Braess’s paradox holds:

* We can find the conditions under which the commute time
decreases with increasing congestion on the connector.
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* Find an experimental city, invest and additional S50M to add budget < S50M

or remove connector roads to see if we possibly make traffic better.
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How do we make sense of this problem?

* Solve for the conditions under which Braess’s paradox holds:

* We can find the conditions under which the commute time
decreases with increasing congestion on the connector.

dT .
Set: — < 0 <«— | Solve for the general conditions in the

de, 10-dimensional parameter space

* We can do the social experiment:

* Find an experimental city, invest and additional S50M to add
or remove connector roads to see if we possibly make traffic better.

e Or... we can try to simulate this system.

Must we?

Physics dept.
budget < S50M

Let’s try it.




10-dimensional algebra...

* We would like to know under what conditions (what values of
the a,, a,, [, etc.) does our system exhibit this paradox.

* Let €, be our control parameter that accounts for congestion:
good roads =smalle, & badroads =large ¢,

* What we really want to know is whether an increase in €, leads
to a decrease in commute times.

* Need to calculate, and then evaluate, the function: ;—T <0
€2



10-dimensional algebra... and two cases.

* Case 1: asymmetric connectors dl BC—AD
de, (C+ De,y)?

* With Classic Braess values (¢, =f3,=y,=0,=€¢,=0):

(a6, — B2v2)N + (B + 63)(ay + f1)

BC - AD = 02(a252 - ﬁZVZ) [_I_(az + yz)(yl + 51) —_ (az + ﬁz + yZ —+ 52)(“1 + 51 + 61)]

BC — AD = 02(“252)[“2521\[ + ﬁ162 + (12]/1] > 0



10-dimensional algebra... and two cases.

e Case 2: symmetric connectors (6=¢€) dT  BC—AD
de, (C+ De,y)?

* With Classic Braess values (¢, =f,=v,=0,=€¢,=0):

2(ay6, — Boy2)N + 2(B, + 65)(ay + B1) ]

BC — AD = (a,6, — B,v2) [+2(a2 +v)y1+6) +(ay+ B +y, +6)(B1 + 71— a1 — 8,)

BC — AD = (a;6,)[2a,6,N + 28,6, + 2a,y1 + (az + 8,) (B +v1)] > 0



Notice that commute time

HOW do we rESO‘Ve? does not depend on ¢;.

* We want to find the case where the time decreases with increasing

congestion.
dT

*Set —<o
de,

* This gives us the condition that we should also have

< [2(az +v2)(B2 + 82) + (az + Bz + vz + 8)€][(ay + B1)(v2 + 62) + (az + B2)(y1 + 1) (az + B2)(v2 + 62)]
a, + B2+ vy, + 6,



Commuting from A to D with intermediate points

e Welcome to the 5" dimension!

The Classic Braess” scenario:

°\High-capacity freeway
30

€, Ngc| Connector road °

Bridge

Bridge
0.1 Nap

v

30 0.1 nyp

High-capacity freeway



