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1 Introduction

Many years ago a friend made a curious statement to me regarding the preferred base for counting.
He pointed out that 9 multiplied by any integer, except 0, yields an integer whose sum of digits
equals 9. For example, 9 x 53 = 477, the sum of the digits being 4 + 7+ 7 = 18, and when the
summing is applied recursively gives 1 + 8 = 9. My friend’s claim was that this indicates some
kind of cosmic preference for base 9 and concluded that we are mistaken in our adherence to the
base 10 counting system. The proof presented here shows that this property of summing digits
after multiplication by 9 is indeed true for base 10, and more generally, that the property holds for
multiplication by b — 1 when counting in base b.

2 Statement of the theorem

Let N € N be a natural number under investigation, b € N* — {1} is the base in which N will
be represented, and let B = {0,...,b — 1} be the set of integers used in this base b representation.
The representation of IV in base b is specified by a sequence of digits, with each digit an element
of B. Equivalently, N can be represented in summation form as

l
N=> nb (1)
=0

where the coefficients n; € B are the numerical coefficients of the digit representation of N in base
b and | € N is the index for which for all i > | we have n; = 0. We define a mapping function
S(N;b) : Nt — N7, the process described in the introduction, as follows

S(N;b) ZZM‘ (2)

where S(IV;b) maps the base b representation of N to a single number. Let Q(N;b) be the
sequence of recursive application of S(N;b), that is, Q (NV;b) = {S(N;b), S(S(N;b)),...}. The
b—1 multiplication theorem is that the limit of Q(M;b) converges to b— 1 for all for M = N(b—1)
for any base b > 2.



3 Proof

We define the function F(N;b) = N — S(N;b), which can be expressed as

l

F(N;b) = n; (b —1) (3)

1=0

and is clearly positive for all N that have more than one digit in their base b representation,
equivalent to the condition [ > 1. Therefore, S(N;b) < N for all N > b and it follows that
Q(N;b) decreases monotonically for N > b. Since F(N;b) =0 for N < b, we have that the limit of
QeBT ={1,...,b— 1} for all N since at least one of the n; must be non-zero.

In the following we consider Q(M;b) for M = N(b— 1), and define the base b representation of
M similar to that for N used previously, only replacing the n; of Eq. 1 with m;.

We first consider the proof for b = 2 as a special case. For b = 2, we have b — 1 equal to the
multiplicative identity element. The product we seek, M = N(b — 1), is therefore equal to N.
Recalling the prior result that the limit of Q(IN;b) € BT, for base 2 this implies that the limit of
Q(N,2) € {1}, and therefore, the limit of Q(NV;b) for all N is equal to 1, and the theorem is proved
for b = 2.

To proceed with the proof for b > 3, we divide N* into subsets based on the length of the
digit representation in base b. That is, we define the set of j-digit representations in base b as
X; ={b/"1,... )b/ — 1} for j € NT, where we note that NT = 25 X;. We proceed by considering
N € X;. Note that if N =1, then M =b—1 and S(M;b) =b— 1. For N > 2 we need the base b
digit representation of M to calculate S(M;b). To derive this form we rewrite M as follows

M = no(b—1) (4)
= (ng—1)b" + (b—np) ¥ (5)

where the second form is allowed because we know that ng # 0 since N € X;. Thus, the coefficient
of the b! term in Eq. 5 can be identified as m; and the % coefficient as mq since they are both
positive given that ng € BT since ng > 1. It now follows that S(M;b) = (ng—1)+ (b—ng) =b—1,
and the theorem is proved for all N € X;. We now extend the results to N € X5. As before, we
rewrite M as

M = (nlb + no) (b — 1) (6)
= n1b2 + (no — nl) bt — nobo (7)

and now have to assess whether all of the coefficients of the b in Eq. 7 are positive. If ng = 0
then we need not modify the b" coefficient. This, however, requires that the second coefficient is
necessarily negative, and so we must add b to it to make it positive, and in turn subtracting 1 from
the b? coefficient, to yield



M = (ny —1)b° + (b+ng —n1) b' — ngt’ (8)

where now all coefficients are positive and can be associated with the m;. It follows that S(M;b) =
b — 1 for this case. If, on the other hand, ng # 0 then we must add b to the b° coefficient and
subtract 1 from the b' coefficient to get

M =n1b?* + (ng —ny — 1) b* + (b —ng) b° (9)

and now need to asses whether the b! coefficient is negative. If ng > ny + 1, then each coefficient is
an element of B, and these coefficients then represent the m; coefficients of the base b representation
of M. Therefore, S(M;b) =ni+ (no—n1—1)+(b—np) = b—1. If, on the other hand, np < n;+1
then the b' coefficient may be made positive by adding b to it, since (ny +1) € {1,...,b}, to get
the following form

M= (n;—1)b*+ (b+ng—ny —1)b' + (b —ng) b° (10)

where each coefficient must now be an element of B and can therefore be identified with the m;.
In this case we have S(M;b) = (ny — 1)+ (b+no—n1 — 1)+ (b—1) = 2(b—1). Given that we are
considering b > 3, and by the results of N € X, we know that S(2(b — 1);b) = b — 1, the theorem
is proved for all N € X5 and for all b.

To extend the theorem to all X;, we must generalize the methods used for analysis of N € Xj
and N € X,. The general polynomial form of M = N(b— 1) for an N € X; with j > 3 is

M = (njbj—i—nj_lbj_l +...+nobo)(b— 1) (11)
njbjﬂ + (nj_l — nj) v + ... = nObO (12)

where we have j + 1 terms in this polynomial representation and we have yet to ensure that the
coefficients of the b* of Eq. 12 are elements of B. We can systematically transform the coefficients
of the b’ to make sure that each of the coefficients is an element of B by progressing from ° to »/*1.

In the form of Eq. 12, the sum of the coefficients of the b is equal to n;+(n;—1 — n;)+...—ng =
0. As before, if ng # 0, we may transform Eq. 12 by adding b to the b° coefficient and subtracting
1 from the b' coefficient. The sum of the coefficients in this representation of M is now b— 1. Upon
inspecting the b! coefficient, should it not be an element of B, then we add a b to the b' coefficient
and subtract a 1 from the b? coefficient. The sum of the coefficients would now be equal to 2(b—1).
In this this way we may proceed through the first j terms until all coefficients are elements of B.
If, on the other hand, ng = 0 then we can leave it unmodified and proceed to the next term. The
b! coefficient either has ny = 0, for which we can proceed to the next term in the sequence, or else
it is non-zero and we must make it positive by adding b to it and subtracting 1 from the coefficient
of the b? coefficient. We must have at least one non-zero n;, and therefore there must be at least
one occurrence for which the coefficients must be modified as outlined here. Therefore, it follows
that S(M;b) = k(b— 1) where k € [1,...,j] for M = N(b—1) and all N € Xj.

We have proved that the limit of Q(N;b) =b—1 for N € X; and N € Xy, and that S(M;b) =
k(b — 1) where k € [1,...,j] for N € X;. We first note that 3 € X; or 3 € X, for all b > 3.



Therefore, because S(M;b) is at most 3(b — 1) for M = N(b—1) and N € X3, it follows that the
limit of Q(N;b) = b—1 for N € X; with j € {1,2,3}. By continuation, since j € Y ] X; for all
j > 3, it follows that the limit of Q(N;b) is b— 1 for all N € N* and all b > 2, and the theorem is
proved.

4 Conclusions

We have proven that recursive digit summing of any b — 1 multiple of a number N results in a value
of b — 1 when N is represented in base b. Therefore, the generalization of my friend’s assertion,
that we should count in base 9, is that we should count in base b — 1. Applied recursively, the limit
of this logic is that the preferable base for counting is base 1.



