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1 Introduction

Many years ago a friend made a curious statement to me regarding the preferred base for counting.
He pointed out that 9 multiplied by any integer, except 0, yields an integer whose sum of digits
equals 9. For example, 9 × 53 = 477, the sum of the digits being 4 + 7 + 7 = 18, and when the
summing is applied recursively gives 1 + 8 = 9. My friend’s claim was that this indicates some
kind of cosmic preference for base 9 and concluded that we are mistaken in our adherence to the
base 10 counting system. The proof presented here shows that this property of summing digits
after multiplication by 9 is indeed true for base 10, and more generally, that the property holds for
multiplication by b− 1 when counting in base b.

2 Statement of the theorem

Let N ∈ N+ be a natural number under investigation, b ∈ N+ − {1} is the base in which N will
be represented, and let B = {0, . . . , b− 1} be the set of integers used in this base b representation.
The representation of N in base b is specified by a sequence of digits, with each digit an element
of B. Equivalently, N can be represented in summation form as

N =

l∑
i=0

nib
i (1)

where the coefficients ni ∈ B are the numerical coefficients of the digit representation of N in base
b and l ∈ N0 is the index for which for all i > l we have ni = 0. We define a mapping function
S(N ; b) : N+ → N+, the process described in the introduction, as follows

S(N ; b) =

l∑
i=0

ni (2)

where S(N ; b) maps the base b representation of N to a single number. Let Q (N ; b) be the
sequence of recursive application of S(N ; b), that is, Q (N ; b) = {S(N ; b), S(S(N ; b)), . . .}. The
b−1 multiplication theorem is that the limit of Q(M ; b) converges to b−1 for all for M = N(b−1)
for any base b ≥ 2.



3 Proof

We define the function F (N ; b) = N − S(N ; b), which can be expressed as

F (N ; b) =

l∑
i=0

ni

(
bi − 1

)
(3)

and is clearly positive for all N that have more than one digit in their base b representation,
equivalent to the condition l ≥ 1. Therefore, S(N ; b) < N for all N ≥ b and it follows that
Q(N ; b) decreases monotonically for N ≥ b. Since F (N ; b) = 0 for N < b, we have that the limit of
Q ∈ B+ = {1, . . . , b− 1} for all N since at least one of the ni must be non-zero.

In the following we consider Q(M ; b) for M = N(b− 1), and define the base b representation of
M similar to that for N used previously, only replacing the ni of Eq. 1 with mi.

We first consider the proof for b = 2 as a special case. For b = 2, we have b − 1 equal to the
multiplicative identity element. The product we seek, M = N(b − 1), is therefore equal to N .
Recalling the prior result that the limit of Q(N ; b) ∈ B+, for base 2 this implies that the limit of
Q(N, 2) ∈ {1}, and therefore, the limit of Q(N ; b) for all N is equal to 1, and the theorem is proved
for b = 2.

To proceed with the proof for b ≥ 3, we divide N+ into subsets based on the length of the
digit representation in base b. That is, we define the set of j-digit representations in base b as
Xj = {bj−1, . . . , bj − 1} for j ∈ N+, where we note that N+ =

∑∞
j Xj . We proceed by considering

N ∈ X1. Note that if N = 1, then M = b− 1 and S(M ; b) = b− 1. For N ≥ 2 we need the base b
digit representation of M to calculate S(M ; b). To derive this form we rewrite M as follows

M = n0 (b− 1) (4)

= (n0 − 1) b1 + (b− n0) b
0 (5)

where the second form is allowed because we know that n0 6= 0 since N ∈ X1. Thus, the coefficient
of the b1 term in Eq. 5 can be identified as m1 and the b0 coefficient as m0 since they are both
positive given that n0 ∈ B+ since n0 ≥ 1. It now follows that S(M ; b) = (n0− 1) + (b−n0) = b− 1,
and the theorem is proved for all N ∈ X1. We now extend the results to N ∈ X2. As before, we
rewrite M as

M = (n1b + n0) (b− 1) (6)

= n1b
2 + (n0 − n1) b

1 − n0b
0 (7)

and now have to assess whether all of the coefficients of the bi in Eq. 7 are positive. If n0 = 0
then we need not modify the b0 coefficient. This, however, requires that the second coefficient is
necessarily negative, and so we must add b to it to make it positive, and in turn subtracting 1 from
the b2 coefficient, to yield
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M = (n1 − 1) b2 + (b + n0 − n1) b
1 − n0b

0 (8)

where now all coefficients are positive and can be associated with the mi. It follows that S(M ; b) =
b − 1 for this case. If, on the other hand, n0 6= 0 then we must add b to the b0 coefficient and
subtract 1 from the b1 coefficient to get

M = n1b
2 + (n0 − n1 − 1) b1 + (b− n0) b

0 (9)

and now need to asses whether the b1 coefficient is negative. If n0 ≥ n1 + 1, then each coefficient is
an element of B, and these coefficients then represent the mi coefficients of the base b representation
of M . Therefore, S(M ; b) = n1 + (n0−n1−1) + (b−n0) = b−1. If, on the other hand, n0 < n1 + 1
then the b1 coefficient may be made positive by adding b to it, since (n1 + 1) ∈ {1, . . . , b}, to get
the following form

M = (n1 − 1) b2 + (b + n0 − n1 − 1) b1 + (b− n0) b
0 (10)

where each coefficient must now be an element of B and can therefore be identified with the mi.
In this case we have S(M ; b) = (n1 − 1) + (b+ n0 − n1 − 1) + (b− 1) = 2(b− 1). Given that we are
considering b ≥ 3, and by the results of N ∈ X1, we know that S(2(b− 1); b) = b− 1, the theorem
is proved for all N ∈ X2 and for all b.

To extend the theorem to all Xj , we must generalize the methods used for analysis of N ∈ X1

and N ∈ X2. The general polynomial form of M = N(b− 1) for an N ∈ Xj with j ≥ 3 is

M = (njb
j + nj−1b

j−1 + . . . + n0b
0)(b− 1) (11)

= njb
j+1 + (nj−1 − nj) b

j + . . .− n0b
0 (12)

where we have j + 1 terms in this polynomial representation and we have yet to ensure that the
coefficients of the bi of Eq. 12 are elements of B. We can systematically transform the coefficients
of the bi to make sure that each of the coefficients is an element of B by progressing from b0 to bj+1.

In the form of Eq. 12, the sum of the coefficients of the bi is equal to nj+(nj−1 − nj)+. . .−n0 =
0. As before, if n0 6= 0, we may transform Eq. 12 by adding b to the b0 coefficient and subtracting
1 from the b1 coefficient. The sum of the coefficients in this representation of M is now b−1. Upon
inspecting the b1 coefficient, should it not be an element of B, then we add a b to the b1 coefficient
and subtract a 1 from the b2 coefficient. The sum of the coefficients would now be equal to 2(b−1).
In this this way we may proceed through the first j terms until all coefficients are elements of B.
If, on the other hand, n0 = 0 then we can leave it unmodified and proceed to the next term. The
b1 coefficient either has n1 = 0, for which we can proceed to the next term in the sequence, or else
it is non-zero and we must make it positive by adding b to it and subtracting 1 from the coefficient
of the b2 coefficient. We must have at least one non-zero ni, and therefore there must be at least
one occurrence for which the coefficients must be modified as outlined here. Therefore, it follows
that S(M ; b) = k(b− 1) where k ∈ [1, . . . , j] for M = N(b− 1) and all N ∈ Xj .

We have proved that the limit of Q(N ; b) = b− 1 for N ∈ X1 and N ∈ X2, and that S(M ; b) =
k(b − 1) where k ∈ [1, . . . , j] for N ∈ Xj . We first note that 3 ∈ X1 or 3 ∈ X2 for all b ≥ 3.
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Therefore, because S(M ; b) is at most 3(b − 1) for M = N(b − 1) and N ∈ X3, it follows that the
limit of Q(N ; b) = b − 1 for N ∈ Xj with j ∈ {1, 2, 3}. By continuation, since j ∈

∑j
1Xj for all

j ≥ 3, it follows that the limit of Q(N ; b) is b− 1 for all N ∈ N+ and all b ≥ 2, and the theorem is
proved.

4 Conclusions

We have proven that recursive digit summing of any b−1 multiple of a number N results in a value
of b − 1 when N is represented in base b. Therefore, the generalization of my friend’s assertion,
that we should count in base 9, is that we should count in base b− 1. Applied recursively, the limit
of this logic is that the preferable base for counting is base 1.
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