What Is Statistics?

Some Definitions of Statistics

This is a course primarily about statistics, but what exactly is statistics? In other
words, what is this course about?! Here are some definitions of statistics from other
people:

e a collection of procedures and principles for gaining information in order to
make decisions when faced with uncertainty (J. Utts (Utt05]),

e a way of taming uncertainty, of turning raw data into arguments that can
resolve profound questions (T. Amabile [FMA89]),

e the science of drawing conclusions from data with the aid of the mathematics
of probability (S. Garfunkel [fMA86]),

e the explanation of variation in the context of what remains unexplained (D.
Kaplan [Kap09]),

e the mathematics of the collection, organization, and interpretation of numer-
ical data, especially the analysis of a population’s characteristics by inference
from sampling (American Heritage Dictionary [AmH82]).

While not exactly the same, these definitions highlight four key elements of statis-
tics.

Data — the raw material

Data are the raw material for doing statistics. We will learn more about different
types of data, how to collect data, and how to summarize data as we go along. This
will be the primary focus of Chapter 1.
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As we will see, the words statistic and statistics get used in more than one way. More on that
later.
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Information — the goal

The goal of doing statistics is to gain some information or to make a decision.
Statistics is useful because it helps us answer questions like the following:

e Which of two treatment plans leads to the best clinical outcomes?
e IHow strong is an I-beam constructed according to a particular design?

e Is my cereal company complying with regulations about the amount of cereal
in its cereal boxes? 5

In this sense, statistics is a science — a method for obtaining new knowledge.

Uncertainty — the context

The tricky thing about statistics is the uncertainty involved. If we measure one box
of cereal, how do we know that all the others are similarly filled? If every box of
cereal were identical and every measurement perfectly exact, then one measurement
would suffice. But the boxes may differ from one another, and even if we measure
the same box multiple times, we may get different answers to the question How
much. cereal is in the box?

So we need to answer questions like How many bozes should we measure? and
How many times should we measure each box? Even so, there is no answer to these
questions that will give us absolute certainty. So we need to answer questions like
How sure do we need to be?

Probability — the tool

In order to answer a question like How sure do we need to be?, we need some way of
measuring our level of certainty. This is where mathematics enters into statistics.
Probability is the area of mathematics that deals with reasoning about uncertainty.
So before we can answer the statistical questions we just listed, we must first develop
some skill in probability. Chapter 2 provides the foundation that we need.

Once we have developed the necessary tools to deal with uncertainty, we will
be able to give good answers to our statistical questions. But before we do that,
let’s take a bird’s eye view of the processes involved in a statistical study. We’ll
come back and fill in the details later.

A First Example: The Lady Tasting Tea

There is a famous story about a lady who claimed that tea with milk tasted different
depending on whether the milk was added to the tea or the tea added to the milk.
The story is famous because of the setting in which she made this claim. She was
attending a party in Cambridge, England, in the 1920s. Also in attendance were a
number of university dons and their wives. The scientists in attendance scoffed at
the woman and her claim. What, after all, could be the difference?

All the scientists but one, that is. Rather than simply dismiss the woman'’s
claim, he proposed that they decide how one should test the claim. The tenor of
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the conversation changed at this suggestion, and the scientists began to discuss how
the claim should be tested. Within a few minutes cups of tea with milk had been
prepared and presented to the woman for tasting.

Let’s take this simple example as a prototype for a statistical study. What
steps are involved?

(1) Determine the question of interest.

Just what is it we want to know? It may take some effort to make a
vague idea precise. The precise questions may not exactly correspond to our
vague questions, and the very exercise of stating the question precisely may
modify our question. Sometimes we cannot come up with any way to answer
the question we really want to answer, so we have to live with some other
question that is not exactly what we wanted but is something we can study
and will (we hope) give us some information about our original question.

In our example this question seems fairly easy to state: Can the lady tell
the difference between the two tea preparations? But we need to refine this
question. For example, are we asking if she always correctly identifies cups of
tea or merely if she does better than we could do ourselves (by guessing)?

(2) Determine the population.
Just who or what do we want to know about? Are we only interested in
this one woman or women in general or only women who claim to be able to
distinguish tea preparations?

(3) Select measurements.

We are going to need some data. We get our data by making some mea-
surements. These might be physical measurements with some device (like a
ruler or a scale). But there are other sorts of measurements too, like the an-
swer to a question on a form. Sometimes it is tricky to figure out just what to
measure. (How do we measure happiness or intelligence, for example?) Just
how we do our measuring will have important consequences for the subsequent
statistical analysis.

In our example, a measurement may consist of recording for a given cup
of tea whether the woman’s claim is correct or incorrect.

(4) Determine the sample.

Usually we cannot measure every individual in our population; we have to
select some to measure. But how many and which ones? These are important
questions that must be answered. Generally speaking, bigger is better, but
it is also more expensive. Moreover, no size is large enough if the sample is
selected inappropriately.

Suppose we gave the lady one cup of tea. If she correctly identifies the
mixing procedure, will we be convinced of her claim? She might just be
guessing; so we should probably have her taste more than one cup. Will we
be convinced if she correctly identifies 5 cups? 10 cups? 50 cups?

What if she makes a mistake? If we present her with 10 cups and she
correctly identifies 9 of the 10, what will we conclude? A success rate of 90%
is, it seems, much better than just guessing, and anyone can make a mistake
now and then. But what if she correctly identifies 8 out of 107 80 out of 1007
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And how should we prepare the cups? Should we make 5 each way? Does
it matter if we tell the woman that there are 5 prepared each way? Should we
flip a coin to decide even if that means we might end up with 3 prepared one
way and 7 the other way? Do any of these differences matter?

(5) Make and record the measurements.

Once we have the design figured out, we have to do the legwork of data
collection. This can be a time-consuming and tedious process. In the case
of the lady tasting tea, the scientists decided to present her with ten cups
of tea which were quickly prepared. A study of public opinion may require
many thousands of phone calls or personal interviews. In a laboratory setting,
each measurement might be the result of a carefully performed laboratory
experiment.

(6) Organize the data.

Once the data have been collected, it is often necessary or useful to orga-
nize them. Data are typically stored in spreadsheets or in other formats that
are convenient for processing with statistical packages. Very large data sets
are often stored in databases.

Part of the organization of the data may involve producing graphical and
numerical summaries of the data. We will discuss some of the most important
of these kinds of summaries in Chapter 1. These summaries may give us initial
insights into our questions or help us detect errors that may have occurred to
this point.

(7) Draw conclusions from data.

Once the data have been collected, organized, and analyzed, we need to
reach a conclusion. Do we believe the woman’s claim? Or do we think she is
merely guessing? How sure are we that this conclusion is correct?

Eventually we will learn a number of important and frequently used meth-
ods for drawing inferences from data. More importantly, we will learn the basic
framework used for such procedures so that it should become easier and easier
to learn new procedures as we become familiar with the framework.

(8) Produce a report.

Typically the results of a statistical study are reported in some manner.
This may be as a refereed article in an academic journal, as an internal re-
port to a company, or as a solution to a problem on a homework assignment.
These reports may themselves be further distilled into press releases, newspa-
per articles, advertisements, and the like. The mark of a good report is that
it provides the essential information about each of the steps of the study.

As we go along, we will learn some of the standard terminology and pro-
cedures that you are likely to see in basic statistical reports and will gain a
framework for learning more. '

At this point, you may be wondering who the innovative scientist was and
what the results of the experiment were. The scientist was R. A. Fisher, who first
described this situation as a pedagogical example in his 1925 book on statistical
methodology [Fis25]. We'll return to this example in Sections 2.4.1 and 2.7.3.
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Summarizing Data

It is a capital mistake to theorize before one has data. Insensibly one
begins to twist facts to suit theories, instead of theories to suit facts.
Sherlock Holmes [Doy27]

Graphs are essential to good statistical analysis.
F. J. Anscombe [Ans73]

Data are the raw material of statistics.

We will organize data into a 2-dimensional schema, which we can think of as
rows and columns in a spreadsheet. The rows correspond to the individuals (also
called cases, subjects, or units depending on the context of the study). The
columns correspond to variables. In statistics, a variable is one of the measure-
ments made for each individual. Each individual has a value for each variable. Or
at least that is our intent. Very often some of the data are missing, meaning that
values of some variables are not available for some of the individuals.

How data are collected is critically important, and good statistical analysis
requires that the data were collected in an appropriate manner. We will return to
the issue of how data are (or should be) collected later. In this chapter we will
focus on the data themselves. We will use R to manipulate data and to produce
some of the most important numerical and graphical summaries of data. A more
complete introduction to R can be found in Appendix A.

1.1. Datain R

Most data sets in R are stored in a structure called a data frame that reflects
the 2-dimensional structure described above. A number of data sets are included
with the basic installation of R. The iris data set, for example, is a famous data
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set containing a number of physical measurements of three varieties of iris. These
data were published by Edgar Anderson in 1935 [And35] but are famous because
R. A. Fisher [Fis36] gave a statistical analysis of these data that appeared a year
later.

The str() function provides our first overview of the data set.

> str(iris)

’data.frame’: 150 obs. of 5 variables:

$ Sepal.Length:num 5.1 4.9 4.7 4.6 56 5.4 4.6 5 4.4 4.9

$ Sepal.Width :num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

$ Petal.length:num 1.4 1.4 1.3 1.51.41.71.41.51.41.5 ...

$ Petal.Width :num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

$ Species :Factor w/ 3 levels "setosa","versicolor",..: 1111111
5 i s S

From this output we learn that our data set has 150 observations (rows) and 5
variables (columns). Also displayed is some information about the type of data
stored in each variable and a few sample values.

While we could print the entire data frame to the screen, this is inconvenient
for large data sets. We can look at the first few or last few rows of the data set
using head () and tail(). This is enough to give us a feel for how the data look.

> head(iris,n=3) # first three fows

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3:5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa

> tail(iris,n=3) # last three rows

Sepal.Length Sepal.Width Petal.Length Petal.Width  Species

148 6.5 3.0 5.2 2.0 virginica
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica

We can access any subset we want by directly specifying which rows and columns
are of interest to us.

> iris[c(1:3,148:150),3:5] # first and last rows, only 3 columns
Petal.Length Petal.Width  Species

1L 1.4 0.2 setosa
2 1.4 0.2 setosa
3 1.3 0.2 setosa
148 5.2 2.0 virginica
149 5.4 2.3 virginica
150 5.1 1.8 virginica
It is also possible to look at just one variable using the $ operator.
> iris$Sepal.Length # get one variable and print as vector

[1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9 5.4 4.8 4.8 4.3 5.8 5.7
[17] 5.4 5.1 5.7 5.1 5.4 5.1 4.65.1 4.85.05.05.25.24.74.85.4
< b lines removed >
[113] 6.8 5.7 5.8 6.4 6.5 7.7 7.7 6.0 6.9 5.6 7.7 6.3 6.7 7.2 6.2 6.1
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Box 1.1. Using the snippet() function

If you have installed the fastR package (and any other additional packages that
may be needed for a particular example) you can execute the code from this
book on your own computer using snippet (). For example,

| snippet (*iris-str %)

will both display and execute the first code block on page 2, and

| snippet (’iris-str’, exec=FALSE)

will display the code without executing it. Keep in mind that some code blocks
assume that prior blocks have already been executed and will not work as

expected if this is not true. J
[129] 6.4 7.2 7.47.96.46.36.1 7.7 6.3 6.4 6.086.9 6.7 6.9 5.8 6.8
[145] 6.7 6.7 6.3 6.5 6.2 5.9
> iris$Species # get one variable and print as vector
[1] setosa setosa setosa setosa setosa
[6] setosa setosa setosa setosa setosa
[11] setosa setosa setosa setosa setosa

< 19 lines removed >

[111] virginica virginica virginica virginica virginica
[116] virginica virginica virginica virginica virginica
[121] virginica virginica virginica virginica virginica
[126] virginica virginica virginica virginica virginica
[131] virginica virginica virginica virginica virginica
[136] virginica virginica virginica virginica virginica
[141] virginica virginica virginica virginica virginica
[146]) virginica virginica virginica virginica virginica
Levels: setosa versicolor virginica

This is not a particularly good way to get a feel for data. There are a number of
graphical and numerical summaries of a variable or set of variables that are usually
preferred to merely listing all the values — especially if the data set is large. That
is the topic of our next section.

It is important to note that the name iris is not reserved in R for this data
set. There is nothing to prevent you from storing something else with that name.
If you do, you will no longer have access to the iris data set unless you first reload
it, at which point the previous contents of iris are lost.

> iris <- ’An iris is a beautiful flower.’

> str(iris)
chr "An iris is a beautiful flower."

> data(iris) # explicitly reload the data set
> str(iris)
‘data.frame’: 150 obs. of 5 variables:

$ Sepal.Lengthinum 5.1 4.9 4.7 4.6 5 5.4 4.6 54.44.9 ...
$ Sepal.Width :num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
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$ Petal.Length:num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.41.5 ...

$ Petal.Width :num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1

$ Species :Factor w/ 3 levels "setosa","versicolor",..: 1 111111
111

The fastR package includes data sets and other utilities to accompany this
text. Instructions for installing fastR appear in the preface. We will use data sets
from a number of other R packages as well. These include the CRAN packages alr3,
car, DAAG, Devore6, faraway, Hmisc, MASS, and multcomp. Appendix A includes
instructions for reading data from various file formats, for entering data manu-
ally, for obtaining documentation on R functions and data sets, and for installing
packages from CRAN.

1.2. Graphical and Numerical Summaries of Univariate Data

Now that we can get our hands on some data, we would like to develop some tools
to help us understand the distribution of a variable in a data set. By distribution
we mean answers to two questions:

e What values does the variable take on?

e With what frequency?

Simply listing all the values of a variable is not an effective way to describe a
distribution unless the data set is quite small. For larger data sets, we require some
better methods of summarizing a distribution.

1.2.1. Tabulating Data

The types of summaries used for a variable depend on the kind of variable we
are interested in. Some variables, like iris$Species, are used to put individuals
into categories. Such variables are called categorical (or qualitative) variables to
distinguish them from quantitative variables which have numerical values on some
numerically meaningful scale. iris$Sepal.Length is an example of a quantitative
variable.

Usually the categories are either given descriptive names (our preference) or
numbered consecutively. In R, a categorical variable is usually stored as a factor.
The possible categories of an R factor are called levels, and you can see in the
output above that R not only lists out all of the values of iris$species but also
provides a list of all the possible leveis for this variable. A more useful summary of
a categorical variable can be obtained using the table() function.

> table(iris$Species) # make a table of values

setosa versicolor virginica
50 50 50

From this we can see that there were 50 of each of three species of iris.
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Tables can be used for quantitative data as well, but often this does not work
as well as it does for categorical data because there are too many categories.

iris-table2

> table(iris$Sepal.Length) # make a table of values

4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.35.45.55.65.7 5.8 5.9
1 3 1 4 2 5 6 10 9 4 1 6 T 6 8 7 3
6 6.1 6.2 6.3 6.46.56.686.7 6.86.9 77.17.27.37.47.6 Tl
6 6 4 9 T 5 2 8 3 4 1 1 3 1 1 1 4

7.9
1

Sometimes we may prefer to divide our quantitative data into two groups based on
a threshold or some other boolean test.

iris-logical
> table(iris$Sepal.Length > 6.0)

FALSE TRUE
89 61

The cut () function provides a more flexible way to build a table from quantitative
data.

>-table(cut (iris$Sepal. Length,breaks=2: 10))

(2,31 (3,41 (4,51 (5,6] (6,77 (7,81 (8,91 (9,10]
0 0 32 57 49 12 0 0

The cut () function partitions the data into sections, in this case with break points
at each integer from 2 to 10. (The breaks argument can be used to set the break
points wherever one likes.) The result is a categorical variable with levels describing
the interval in which each original quantitative value falls. If we prefer to have the
intervals closed on the other end, we can achieve this using right=FALSE.

> table(cut(iris$Sepal.Length,breaks=2:10 ,right=FALSE))

[2,3) [3,4) [4,5) [5,6) [é,?) [7,8) [8,9) [9,10)
0 0 22 61 54 13 0 0

Notice too that it is possible to define factors in R that have levels that do not
occur. This is why the 0’s are listed in the output of table(). See ?factor for
details.

A tabular view of data like the example above can be converted into a vi-
sual representation called a histogram. There are two R functions that can be
used to build a histogram: hist() and histogram(). hist() is part of core R.
histogram() can only be used after first loading the lattice graphics package,
which now comes standard with all distributions of R. Default versions of each are
depicted in Figure 1.1. A number of arguments can be used to modify the resulting
plot, set labels, choose break points, and the like.

Looking at the plots generated by histogram() and hist (), we sec that they
use different scales for the vertical axis. The default for histogram() is to use
P Ak ent) R eemtract hast () nses counts. The shapes of
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Figure 1.1. Comparing two histogram functions: histogram() on the left,
and hist() on the right.

the two histograms differ because they use slightly different algorithms for choosing
the default break points. The user can, of course, override the default break points
(using the breaks argument). There is a third scale, called the density scale, that is
often used for the vertical axis. This scale is designed so that the area of each bar is
equal to the proportion of data it represents. This is especially useful for histograms
that have bins (as the intervals between break points are typically called in the
context of histograms) of different widths. Figure 1.2 shows an example of such a
histogram generated using the following code:

> histogram(~“Sepal.Length,data=iris,type="dens ity",

+ breaks=c(4,5,5.5,6,6.5,7,8,10))

We will generally use the newer histogram() function because it has several
nice features. One of these is the ability to split up a plot into subplots called
panels. For example, we could build a separate panel for each species in the iris
data set. Figure 1.2 suggests that part of the variation in sepal length is associated
with the differences in species. Setosa are generally shorter, virginica longer, and
versicolor intermediate. The right-hand plot in Figure 1.2 was created using

I > histogram(~Sepal.Length|Species,data=iris)

If we only want to see the data from one species, we can select a subset of the data
using the subset argument.

> histogram(~Sepal.Length|Species,data=iris,

+ subset=Species=="virginica")

04

03

02

Density
Percent of Total

o1

00

Sepal.Length Sepal.Length

Figure 1.2. Left: A density histogram of sepal length using unequal bin
widths. Right: A histogram of sepal length by species.
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Percent of Total

Sepal.Length

Figure 1.3. This histogram is the result of selecting a subset of the data using
the subset argument.

By keeping the groups argument, our plot will continue to have a strip at the top
identifying the species even though there will only be one panel in our plot (Figure
1.3).

The lattice graphing functions all use a similar formula interface. The generic
form of a formula is

I y x|z

which can often be interpreted as “y modeled by x conditioned on z”". For plotting,
y will typically indicate a variable presented on the vertical axis, and x a variable
to be plotted along the horzontal axis. In the case of a histogram, the values for
the vertical axis are computed from the x variable, so y is omitted. The condition
- is a variable that is used to break the data into sections which are plotted in
separate panels. When z is categorical, there is one panel for each level of z. When
z is quantitative, the data is divided into a number of sections based on the values
of z. This works much like the cut() function, but some data may appear in
more than one panel. In R terminology, each panel represents a shingle of the data.
The term shingle is supposed to evoke an image of overlapping coverage like the
shingles on a roof. Finer control over the number of panels can be obtained by using
equal.count() or co. intervals() to make the shingles directly. See Figure 1.4.

1.2.2. Shapes of Distributions

A histogram gives a shape to a distribution, and distributions are often described
in terms of these shapes. The exact shape depicted by a histogram will depend not
only on the data but on various other choices, such as how many bins are used,
whether the bins are equally spaced across the range of the variable, and just where
the divisions between bins are located. But reasonable choices of these arguments
will usually lead to histograms of similar shape, and we use these shapes to describe
the underlying distribution as well as the histogram that represents it.

Some distributions are approximately symmetrical with the distribution of
the larger values looking like a mirror image of the distribution of the smaller values.
We will call a distribution positively skewed if the portion of the distribution
with larger values (the right of the histogram) is more spread out than the other
side. Similarly, a distribution is negatively skewed if the distribution deviates
from symmetry in the opposite manner. Later we will learn a way to measure
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Figure 1.4. The output of histogram(~Sepal.Length|Sepal.Width,iris)
and histogram(~Sepal.Length|equal.count(Sepal.Width,number=4),iris).
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Figure 1.5. Left: Skewed and symmetric distributions. Right: Old Faithful
eruption times illustrate a bimodal distribution. ’

the degree and direction of skewness with a number; for now it is sufficient to
describe distributions qualitatively as symmetric or skewed. See Figure 1.5 for
some examples of symmetric and skewed distributions.

Notice that each of these distributions is clustered around a center where most
of the values are located. We say that such distributions are unimodal. Shortly we
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will discuss ways to summarize the location of the “center” of unimodal distributions
numerically. But first we point out that some distributions have other shapes that
are not characterized by a strong central tendency. One famous example is eruption
times of the Old Faithful geyser in Yellowstone National park.

. faithful-hist
l> plot <- histogram('eruptions,faithful,n=20)

produces the histogram in Figure 1.5 which shows a good example of a bimodal
distribution. There appear to be two groups or kinds of eruptions, some lasting
about 2 minutes and others lasting between 4 and 5 minutes.

1.2.3. Measures of Central Tendency

Qualitative descriptions of the shape of a distribution are important and useful.
But we will often desire the precision of numerical summaries as well. Two aspects
of unimodal distributions that we will often want to measure are central tendency
(what is a typical value? where do the values cluster?) and the amount of variation
(are the data tightly clustered around a central value, or more spread out?).

Two widely used measures of center are the mean and the median. You are
probably already familiar with both. The mean is calculated by adding all the
values of a variable and dividing by the number of values. Our usual notation will
be to denote the n values as xq,Zs, . .. T, and the mean of these values as T. Then
the formula for the mean becomes

T
e Y icq T

n

The median is a value that splits the data in half — half of the values are smaller
than the median and half are larger. By this definition, there could be more than
one median (when there are an even number of values). This ambiguity is removed
by taking the mean of the “two middle numbers” (after sorting the data). See the
exercises for some problems that explore aspects of the mean and median that may
be less familiar.

The mean and median are easily computed in R. For example,

iris-mean-median

> mean(iris$Sepal.lLength); median(iris$Sepal.Length)
[1] 5.8433
(1] 5.8

Of course, we have already seen (by looking at histograms), that there are
some differences in sepal length between the various species, so it would be better
to compute the mean and median separately for each species. While one can use
the built-in aggregate () function, we prefer to use the summary () function from
the Hmisc package. This function uses the same kind of formula notation that the
lattice graphics functions use.

> IEQUiI'E(HIDiSC) # load Hmisc package iris-Hmisc-summary

> summary{Sepal.Length"Species,iris) # default function is mean
Sepal.Length N=150
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Box 1.2. R packages used in this text

From now on we will assume that the lattice, Hmisc, and fastR packages have
been loaded and will not show the loading of these packages in our examples.
If you try an example in this book and R reports that it cannot find a function
or data set, it is likely that you have failed to load one of these packages. You
can set up R to automatically load these packages every time you launch R if
you like. (See Appendix A for details.)

Other packages will be used from time to time as well. In this case, we will
show the require() statement explicitly. The documentation for the fastR
package includes a list of required and recommended packages.

Hommmmme Fommm e s e +
| | IN |Sepal.Length]|

R e s T +

| Species|setosa | 50]15.0060 |

| |versicolor| 50/5.9360 I

| lvirginica | 50(6.5880 |

e B S T +

|Overalll |15015.8433 |

dm—————— B e +

> summary(Sepal.Length™Species,iris,fun=median) # median instead
Sepal.Length N=150

e Hmmmmm e e +
| | IN [Sepal.Length]|
e Hmmm e e +

|Species|setosa | 5015.0 I
| | versicolor| 50|5.9 |
| |virginica | 50(6.5 |
PR U — T S ——— +
|Overalll 1150(5.8 |
e e o +

Comparing with the histograms in Figure 1.2, we see that these numbers are indeed
good descriptions of the center of the distribution for each species.

We can also compute the mean and median of the Old Faithful eruption times.

> mean(faithful$eruptions) I faithful-mean-median I

[1] 3.4878
> median(faithful$eruptions)
(1] 4

Notice, however, that in the Old Faithful eruption times histogram (Figure 1.5)
there are very few eruptions that last between 3.5 and 4 minutes. So although
these numbers are the mean and median, neither is a very good description of the
typical eruption time(s) of Old Faithful. It will often be the case that the mean
and median are not very good descriptions of a data set that is not unimodal.
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> stem(faithful$eruptions)
The decimal point is 1 digit(s) to the left of the |
16 | 070355555588
18 | 000022233333335577777777888822335777888
20 | 00002223378800035778
22 | 0002335578023578
24 | 00228
26 | 23
28 | 080
3017
32 | 2337
34 | 250077
36 | 0000823577
38 | 2333335582225577
40 | 0000003357788888002233555577778
42 | 03335555778800233333555577778
44 | 02222335557780000000023333357778888
46 | 0000233357700000023578 =
48 | 00000022335800333
50 | 0370

Figure 1.6. Stemplot of Old Faithful eruption times using stem().

In the case of our Old Faithful data, there seem to be two predominant peaks,
but unlike in the case of the iris data, we do not have another variable in our
data that lets us partition the eruption times into two corresponding groups. This
observation could, however, lead to some hypotheses about Old Faithful eruption
times. Perhaps eruption times at night are different from those during the day.
Perhaps there are other differences in the eruptions. Subsequent data collection
(and statistical analysis of the resulting data) might help us determine whether our
hypotheses appear correct.

One disadvantage of a histogram is that the actual data values are lost. For a
large data set, this is probably unavoidable. But for more modestly sized data sets,
a stemplot can reveal the shape of a distribution without losing the actual (perhaps
rounded) data values. A stemplot divides each value into a stem and a leaf at some
place value. The leaf is rounded so that it requires only a single digit. The values
are then recorded as in Figure 1.6. '

From this output we can readily see that the shortest recorded eruption time
was 1.60 minutes. The second 0 in the first row represents 1.70 minutes. Note that
the output of stem() can be ambiguous when there are not enough data values in
a row.

Comparing mean and median
Why bother with two different measures of central tendency? The short answer is

that they measure different things. If a distribution is (approximately) symimetric,
the mean and median will be (approximately) the same (see Exercise 1.5). If the
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distribution is not symmetric, however, the mean and median may be very different,
and one measure may provide a more useful summary than the other.

For example, if we begin with a symmetric distribution and add in one addi-
tional value that is very much larger than the other values (an outlier), then the
median will not change very much (if at all), but the mean will increase substan-
tially. We say that the median is resistant to outliers while the mean is not. A
similar thing happens with a skewed, unimodal distribution. If a distribution is
positively skewed, the large values in the tail of the distribution increase the mean
(as compared to a symmetric distribution) but not the median, so the mean will
be larger than the median. Similarly, the mean of a negatively skewed distribution
will be smaller than the median.

Whether a resistant measure is desirable or not depends on context. If we are
looking at the income of employees of a local business, the median may give us a
much better indication of what a typical worker earns, since there may be a few
large salaries (the business owner’s, for example) that inflate the mean. This is also
why the government reports median household income and median housing costs.

On the other hand, if we compare the median and mean of the value of raffle
prizes, the mean is probably more interesting. The median is probably 0, since
typically the majority of raffle tickets do not win anything. This is independent of
the values of any of the prizes. The mean will tell us something about the overall
value of the prizes involved. In particular, we might want to compare the mean
prize value with the cost of the raffle ticket when we decide whether or not to
purchase one.

The trimmed mean compromise

There is another measure of central tendency that is less well known and represents
a kind of compromise between the mean and the median. In particular, it is more
sensitive to the extreme values of a distribution than the median is, but less sensitive
than the mean. The idea of a trimmed mean is very simple. Before calculating the
mean, we remove the largest and smallest values from the data. The percentage of
the data removed from each end is called the trimming percentage. A 0% trimmed
mean is just the mean; a 50% trimmed mean is the median; a 10% trimmed mean
is the mean of the middle 80% of the data (after removing the largest and smallest
10%). A trimmed mean is calculated in R by setting the trim argument of mean(),
e.g., mean(x,trim=0.10). Although a trimmed mean in some sense combines the
advantages of both the mean and median, it is less common than either the mean or
the median. This is partly due to the mathematical theory that has been developed
for working with the median and especially the mean of sample data.

1.2.4. Measures of Dispersion

It is often useful to characterize a distribution in terms of its center, but that is not
the whole story. Consider the distributions depicted in the histograms in Figure 1.7.
In each case the mean and median are approximately 10, but the distributions
clearly have very different shapes. The difference is that distribution B is much
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more “spread out”. “Almost all” of the data in distribution A is quite close to 10; a
much larger proportion of distribution B is “far away” from 10. The intuitive (and
not very precise) statement in the preceding sentence can be quantified by means
of quantiles. The idea of quantiles is probably familiar to you since percentiles
are a special case of quantiles.

Definition 1.2.1 (Quantile). Let p € [0,1]. A p-quantile of a quantitative dis-
tribution is a number g such that the (approximate) proportion of the distribution
that is less than g is p.

So, for example, the 0.2-quantile divides a distribution into 20% below and 80%
above. This is the same as the 20th percentile. The median is the 0.5-quantile (and
the 50th percentile).

The idea of a quantile is quite straightforward. In practice there are a few
wrinkles to be ironed out. Suppose your data set has 15 values. What is the 0.30-
quantile? Exactly 30% of the data would be (0.30)(15) = 4.5 values. Of course,
there is no number that has 4.5 values below it and 11.5 values above it. This is
the reason for the parenthetical word approzimate in Definition 1.2.1. Different
schemes have been proposed for giving quantiles a precise value, and R implements
several such methods. They are similar in many ways to the decision we had to
make when computing the median of a variable with an even number of values.

Two important methods can be described by imagining that the sorted data
have been placed along a ruler, one value at every unit mark and also at each end.
To find the p-quantile, we simply snap the ruler so that proportion p is to the left
and 1—p to the right. If the break point happens to fall precisely where a data value
is located (i.e., at one of the unit marks of our ruler), that value is the p-quantile. If
the break point is between two data values, then the p-quantile is a weighted mean

of those two values.

Example 1.2.1. Suppose we have 10 data values: 1,4,9, 16,25, 36, 49, 64,81, 100.
The 0O-quantile is 1, the l-quantile is 100, the 0.5-quantile (median) is midway
between 25 and 36, that is, 30.5. Since our ruler is 9 units long, the 0.25-quantile
is located 9/4 = 2.25 units from the left, edge. That would be one quarter of the
way from 9 to 16, which is 9 + 0.25(16 — 9) = 9+ 1.75 = 10.75. (See Figure 1.8.)
Other quantiles are found similarly. This is precisely the default method used by
quantile().

~10 0 10 20 30
1 | 1 1 1 1 1 1 1
A ] 3 G B Sk
0.20 L
_b?:; 0.15 B
% 0.10 L
=8 ,rrfﬂﬂﬁnn‘!n
0.00
T T T T T T T T T
-10 0 10 20 30

Figure 1.7. Histograms showing smaller (A) and larger (B) amounts of variation.
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Figure 1.8. Illustrations of two methods for determining quantiles from data.
Arrows indicate the locations of the 0.25-, 0.5-, and 0.75-quantiles.

> quantile((1:10)°2)

0% 25%, 50% 75%  100%
1.00 10.75 30.50 60.25 100.00 <

A second scheme is just like the first one except that the data values are placed
midway between the unit marks. In particular, this means that the 0-quantile
is not the smallest value. This could be useful, for example, if we imagined we
were trying to estimate the lowest value in a population from which we only had
a sample. Probably the lowest value overall is less than the lowest value in our
particular sample. The only remaining question is how to extrapolate in the last
half unit on either side of the ruler. If we set quantiles in that range to be the
minimum or maximum, the result is another type of quantile().

Example 1.2.2. The method just described is what type=5 does.

> quantile((1:10)°2,type=5)

0% 25} 50% 75% 100%
1.0 9.0 30.5 64.0 100.0

Notice that quantiles below the 0.05-quantile are all equal to the minimum value.

> quantile((1:10)°2,type=5,seq(0,0.10,by=0.005))
0% 0.5% 1% 1.5% 2% 2.5Y% 3% 3.5% 4% 4.5% 5% 5.5% 6% 6.5%

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.15 1.30 1.45
7% 7.5% 8% 8.5% 9% 9.5% 10%

1.60 1.75 1.90 2.05 2.20 2.35 2.50

A similar thing happens with the maximum value for the larger quantiles. <

Other methods refine this idea in other ways, usually based on some assump-
tions about what the population of interest is like.

Fortunately, for large data sets, the differences between the different quantile
methods are usually unimportant, so we will just let R compute quantiles for us
using the quantile() function. For example, here are the deciles and quartiles
of the Old Faithful eruption times.

> quantile(faithful$eruptions, (0:10)/10)

0% 10% 20% 30% 407, 50% 607 70% 80% 90%
1.6000 1.8517 2.0034 2.3051 3.6000 4.0000 4.1670 4.3667 4.5330 4.7000
100%
5.1000
> quantile(faithful$eruptions, (0:4)/4)
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Figure 1.9. Boxplots for iris sepal length and Old Faithful eruption times.

0% 25% 507% 75%  100%
1.6000 2.1627 4.0000 4.4543 5.1000

The latter of these provides what is commonly called the five-number summary.
The 0-quantile and 1-quantile (at least in the default scheme) are the minimum
and maximum of the data set. The 0.5-quantile gives the median, and the 0.25-
and 0.75-quantiles (also called the first and third quartiles) isolate the middle 50%
of the data. When these numbers are close together, then most (well, half, to be
more precise) of the values are near the median. If those numbers are farther apart,
then much (again, half) of the data is far from the center. The difference between
the first and third quartiles is called the interquartile range and is abbreviated
IQR. This is our first numerical measure of dispersion.

The five-number summary can also be presented graphically using a boxplot
(also called box-and-whisker plot) as in Figure 1.9. These plots were generated

using
[mris]

> bwplot(Sepal.Length”Species, data=iris)
> bwplot(Species'Sepal‘Length,data=iris)
> bwplot (“eruptions,faithful)

The size of the box reflects the IQR. If the box is small, then the middle 50% of
the data are near the median, which is indicated by a dot in these plots. (Some
boxplots, including those made by the boxplot() use a vertical line to indicate
the median.) Outliers (values that seem unusually large or small) can be indicated
by a special symbol. The whiskers are then drawn from the box to the largest
and smallest non-outliers. One common rule for automating outlier detection for
boxplots is the 1.5 IQR rule. Under this rule, any value that is more than 1.5 1QR
away from the box is marked as an outlier. Indicating outliers in this way is useful
since it allows us to see if the whisker is long only because of one extreme value.

Variance and standard deviation

Another important way to measure the dispersion of a distribution is by comparing
each value with the mean of the distribution. If the distribution is spread out, these
differences will tend to be large; otherwise these differences will be small. To get a
single number, we could simply add up all of the deviation from the mean:

total deviation from the mean = E (x —7T) .
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The trouble with this is that the total deviation from the mean is always 0 because
the negative deviations and the positive deviations always exactly cancel out. (See
Exercise 1.10).

To fix this problem, we might consider taking the absolute value of the devia-
tions from the mean:

total absolute deviation from the mean = E |z — 7| .
This number will only be 0 if all of the data values are equal to the mean. Even
better woilld be to divide by the number of data values:
5 s 1 -
mean absolute deviation = — E |l —F| .
n

Otherwise large data sets will have large sums even if the values are all close to the
mean. The mean absolute deviation is a reasonable measure of the dispersion in
a distribution, but we will not use it very often. There is another measure that is
much more common, namely the variance, which is defined by

variance = Var(z) = 1 Z (z-7)° .
n—1

You will notice two differences from the mean absolute deviation. First, instead
of using an absolute value to make things positive, we square the deviations from
the mean. The chief advantage of squaring over the absolute value is that it is
much easier to do calculus with a polynomial than with functions involving absolute
values. Because the squaring changes the units of this measure, the square root
of the variance, called the standard deviation, is commonly used in place of the
variance.

The second difference is that we divide by n — 1 instead of by n. There is
a very good reason for this, even though dividing by n probably would have felt
much more natural to you at this point. We'll get to that very good reason later
in the course (in Section 4.6). For now, we'll settle for a less good reason. If you
know the mean and all but one of the values of a variable, then you can determine
the remaining value, since the sum of all the values must be the product of the
number of values and the mean. So once the mean is known, there are only n — 1
independent pieces of information remaining. That is not a particularly satisfying
explanation, but it should help you remember to divide by the correct quantity.

All of these quantities are easy to compute in R.

> x=c(1,3,5,5,6,8,9,14,14,20)

>
> mean(x)

[1] 8.5

> x - mean(x)

(1] -7.5 -5.5 -3.5 -3.5 -2.5 -0.5 0.5 5.5 5.5 11.5
> sum(x - mean(x))

[1] 0

> abs(x - mean(x))

[1] 7.5 5.5 3.5 3.5 2.5 0.5 0.5 5.5 5.5 11.5
> sum(abs(x - mean(x)))

[1] 46
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> (x - mean(x))"2
[1] 56.25 30.25 12.25 12.25 6.25 0.25 0.256 30.25 30.25
[10] 132.25
> sum((x - mean(x))"2)
[1] 310.5
> n= length(x)
> 1/(n-1) * sum((x - mean(x))"2)
[1] 34.5
> var(x)
[1] 34.5
> sd(x)
[1] 5.8737
> sd(x)"2
[1] 34.5

1.3. Graphical and Numerical Summaries of Multivariate Data

1.3.1. Side-by-Side Comparisons

Often it is useful to consider two or more variables together. In fact, we have already
done some of this. For example, we looked at iris sepal length separated by species.
This sort of side-by-side comparison — in graphical or tabular form — is especially
useful when one variable is quantitative and the other categorical. Graphical or
numerical summaries of the quantitative variable can be made separately for each
group defined by the categorical variable (or by shingles of a second quantitative
variable). See Appendix A for more examples.

1.3.2. Scatterplots

There is another plot that is useful for looking at the relationship between two
quantitative variables. A scatterplot (or scattergram) is essentially the familiar
Cartesian coordinate plot you learned about in school. Since each observation in a
bivariate data set has two values, we can plot points on a rectangular grid repre-
senting both values simultaneously. The lattice function for making a scatterplot
is xyplot ().

The scatterplot in Figure 1.10 becomes even more informative if we separate
the dots of the three species. Figure 1.11 shows two ways this can be done. The
first uses a conditioning variable, as we have seen before, to make separate panels
for each species. The second uses the groups argument to plot the data in the same
panel but with different symbols for each species. FEach of these clearly indicates
that, in general, plants with wider sepals also have longer sepals but that the typical
values of and the relationship between width and length differ by species.

1.3.3. Two-Way Tables and Mosaic Plots

A 1981 paper [Rad81] investigating racial biases in the application of the death
penalty reported on 326 cases in which the defendant was convicted of murder.
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Figure 1.10. A scatterplot made with xyplot(Sepal.Length~Sepal.Width,iris).

For each case they noted the race of the defendant and whether or not the death
penalty was imposed. We can use R to cross tabulate this data for us:

> xtabs("Penalty+Victim,data=deathPenalty)

Victim
Penalty Black White
Death 6 30
Not 106 184

| intro-deathPenalty01 ]

Perhaps you are surprised that white defendants are more likely to receive
the death penalty. It turns out that there is more to the story. The researchers
also recorded the race of the victim. If we make a new table that includes this

information, we see something interesting.

+ data=deathPenalty)
, . Victim = Black
Defendant
Penalty Black White
Death 6 0
Not 97 9
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> xtabs(“Penalty+Defendant+Victim,

I intro-deathPenalty02 1

, » Victim White
Defendant

Penalty Black White

Death 11 19

Not 52 132
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Figure 1.11. The output of xyplot(Sepal.Length~Sepal.Width|Species,iris)
and xyplot(Sepal.Length~Sepal.Width,groups=Species,iris,auto.key=TRUE).
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Figure 1.12. A mosaic plot of death penalty by race of defendant and victim.

It appears that black defendants are more likely to receive the death penalty
when the victim is white and also when the victim is black, but not if we ignore
the race of the victim. This sort of apparent contradiction is known as Simpson’s
paradox. In this case, it appears that the death penalty is more likely to be given
for a white victim, and since most victims are the same race as their murderer, the
result is that overall white defendants are more likely (in this data set) to receive
the death penalty even though black defendants are more likely (again, in this data
set) to receive the death penalty for each race of victim.

The fact that our understanding of the data is so dramatically influenced by
whether or not our analysis includes the race of the victim is a warning to watch for
lurking variables - variables that have an important effect but are not included
in our analysis — in other settings as well. Part of the design of a good study is

selecting the right things to measure.

These cross tables can be visualized graphically using a mosaic plot. Mosaic
plots can be generated with the core R function mosaicplot () or with mosaic()
from the vcd package. (ved is short for visualization of categorical data.) The
latter is somewhat more flexible and usually produces more esthetically pleasing
output. A number of different formula formats can be supplied to mosaic(). The
results of the following code are shown in Figure 1.12.

> require(vcd) ’

> mosaic( Victim+Defendant +DeathPenalty,dat a=deathPen)

> structable( Victim+Def endant+DeathPenalty, data=deathPen)
Defendant Bl Wh

Victim DeathPenalty

Bl No a7 9
Yes 6 0
Wh No 52 132
Yes 11 19

As always, see 7mosaic for more information. The vcd package also provides an
alternative to xtabs() called structable(), and if you print () a mosaic(), you
will get both the graph and the table.

s
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1.4. Summary

Data can be thought of in a 2-dimensional structure in which each variable has
a value (possibly missing) for each observational unit. In most statistical soft-
ware, including R, columns correspond to variables and rows correspond to the
observations.

The distribution of a variable is a description of the values obtained by a
variable and the frequency with which they occur. While simply listing all the
values does describe the distribution completely, it is not easy to draw conclusions
from this sort of description, especially when the number of observational units is
large. Instead, we will make [requent use of numerical and graphical summaries
that make it easier to see what is going on and to make comparisons.

The mean, median, standard deviation, and interquartile range are
among the most common numerical summaries. The mean and median give an
indication of the “center” of the distribution. They are especially useful for uni-
modal distributions but may not be appropriate summaries for distributions with
other shapes. When a distribution is skewed, the mean and median can be quite
different because the extreme values of the distribution have a large effect on the
mean but not on the median. A trimmed mean is sometimes used as a compromise
between the median and the mean. Although one could imagine other measures of
spread, the standard deviation is especially important because of its relationship
to important theoretical results in statistics, especially the Central Limit Theorem,
which we will encounter in Chapter 4.

Even as we learn formal methods of statistical analysis, we will not abandon
these numerical and graphical summaries. Appendix A provides a more complete
introduction to R and includes information on how to fine-tune plots. Additional
examples can be found throughout the text.

1.4.1. R Commands

Here is a table of important R commands introduced in this chapter. Usage details
can be found in the examples and using the R help.

x <= c(...) Concatenate arguments into a single vector
and store in object x.

data(x) (Re)load the data set x.

str(x) Print a summary of the object x.
head (x,n=4) First four rows of the data frame x.
tail(x,n=4) Last four rows of the data frame x.
table(x) Table of the values in vector x.

xtabs("x+y,data) Cross tabulation of x and y.
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cut (x,breaks,right=TRUE)

require(fastR);
require(lattice);
require(Hmisc)
histogram(~x|z,data,...)
bwplot(x~z,data,...)
xyplot(y~xlz,data,...)
stem(x)

sum(x); mean(x); median(x);
var(x); sd(x); quantile(x)

summary(y~x,data,fun)

Divide up the range of x into intervals and
code the values in x according to which inter-
val they fall into.

Load packages.

Histogram of x conditioned on z.
Boxplot of x conditioned on z.
Scatterplot of y by x conditioned on z.
Stemplot of x.

Sum, mean, median, variance, standard devi-
ation, quantiles of x.

Summarize y by computing the function fun
on each group defined by x [Hmisc].

T T
Exercises

1.1. Read as much of Appendix A as you need to do the exercises there.

1.2. The pulse variable in the 1ittleSurvey data set contains self-reported pulse

rates.

a) Make a histogram of these values, What problem does this histogram reveal?

b) Make a decision about what values should be removed from the data and make
a histogram of the remaining values. (You can use the subset argument of
the histogram() function to restrict the data or you can create a new vector
and make a histogram from that.)

c) Compute the mean and median of your restricted set of pulse rates.

1.3. The pulse variable in the littleSurvey data set contains self-reported pulse
rates. Make a table or graph showing the distribution of the last digits of the
recorded pulse rates and comment on the distribution of these digits. Any conjec-

tures?

Note: %% is the modulus operator in R. So x %% 10 gives the remainder after
dividing x by 10, which is the last digit.

1.4. Some students in introductory statistics courses were asked to select a num-
ber between 1 and 30 (inclusive). The results are in the number variable in the

littleSurvey data set.
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a) Make a table showing the frequency with which each number was selected
using table().

b) Make a histogram of these values with bins centered at the integers from 1 to
30.

¢) What numbers were most frequently chosen? Can you get R to find them for
yvou?

d) What numbers were least frequently chosen? Can you get R to find them for
?
you’

e) Make a table showing how many students selected odd versus even numbers.

1.5. The distribution of a quantitative variable is symmetric about m if whenever
there are k observations with value m + d, there are also k observations with value
m — d. Equivalently, if the values are z; < 2 < -.- < Tp, then z; + Th41-; = 2m
for all 7.

a) Show that if a distribution is symmetric about m, then m is the median. (You
may need to handle separately the cases where the number of values is odd
and even.)’

b) Show that if a distribution is symmetric about m, then m is the mean.

c) Create a small distribution such that the mean and median are equal to m
but the distribution is not symmetric about m.

1.6. Describe some situations where the mean or median is clearly a better measure
of central tendency than the other.

N 1.7. Below are histograms and boxplots from six distributions. Match each his-
togram (A-F) with its corresponding boxplot (U-Z).

N Y N Y Sy N O I N 1 1 1 1 1

v b— %} —|
_. l!“!

A F

Percent of Total

1.8. The function bwplot () does not use the quantile() function to compute its
five-number summary. Instead it uses fivenum(). Technically, fivenum() com-
putes the hinges of the data rather than quantiles. Sometimes fivenum() and
quantile() agree:

> fivenum(1:11)
[1] 1.0 3.5 6.0 8.5 11.0
> quantile(1:11)
0% 25% 50% 75% 100%
1.0 3.5 6.0 8.5 11.0




Exercises

But sometimes they do not:

> fivenum(1:10)

(1] 1.0 3.0 5.5 8.0 10.0
> quantile(1:10)

0% 25% 50% 754 100%
1.00 3.25 5.50 7.75 10.00

Compute fivenum() on a number of data sets and answer the following questions:

a) When does fivenum() give the same values as quantile()?

b) What method is fivenum() using to compute the five numbers?

1.9. Design some data sets to test whether by default bwplot () uses the 1.5 IQR
rule to determine whether it should indicate data as outliers.
1.10. Show that the total deviation from the mean, defined by
n
total deviation from the mean = Z(m, -I),
a i=1

is 0 for any distribution.

1.11. We could compute the mean absolute deviation from the median instead of
from the mean. Show that the mean absolute deviation from the median is never
larger than the mean absolute deviation from the mean.

1.12. We could compute the mean absolute deviation from any number ¢ (¢ for
center). Show that the mean absolute deviation from ¢ is always at least as large
as the mean absolute deviation from the median. Thus the median is a minimizer
of mean absolute deviation.

1.13. Let 5S(c) = S.(z; — ¢)®. (SS stands for sum of squares.) Show that the
smallest value of SS(¢) occurs when ¢ = T. This shows that the mean is a minimizer
of §§5.

1.14. Find a distribution with 10 values between 0 and 10 that has as large a
variance as possible.

1.15. Find a distribution with 10 values between 0 and 10 that has as small a
variance as possible.

1.16. The pitching2005 data set in the fastR package contains 2005 season statis-
tics for each pitcher in the major leagues. Use graphical and numerical summaries
of this data set to explore whether there are differences between the two leagues,
restricting your attention to pitchers that started at least 5 games (the variable GS
stands for ‘games started’). You may select the statistics that are of interest to
you.

If you are not much of a baseball fan, try using ERA (earned run average), which
is a measure of how many runs score while a pitcher is pitching. It is measured in
runs per nine innings.

1.17. Repeat the previous problem using batting statistics. The fastR data set
batting contains data on major league batters over a large number of years. You
may want to restrict your attention to a particular year or set of years.
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1.18. Have major league batting averages changed over time? If so, in what ways?
Use the data in the batting data set to explore this question. Use graphical and
numerical summaries to make your case one way or the other.

1.19. The faithful data set contains two variables: the duration (eruptions) of
the eruption and the time until the next eruption (wvaiting).

a) Make a scatterplot of these two variables and comment on any patterns you
see.

b) Remove the first value of eruptions and the last value of waiting. Make a
scatterplot of these two vectors.

¢) Which of the two scatterplots reveals a tighter relationship? What does that
say about the relationship between eruption duration and the interval between
eruptions?

1.20. The results of a little survey that has been given to a number of statistics
students are available in the 1ittleSurvey data set. Make some conjectures about
the responses and use R’s graphical and numerical summaries to see if there is any
(informal) evidence to support your conjectures. See ?littleSurvey for details
about the questions on the survey.

1.21. The utilities data set contains information from utilities bills for a personal
residence over a number of years. This problem explores gas usage over time.

a) Make a scatterplot of gas usage (ccf) vs. time. You will need to combine
month and year to get a reasonable measurement for time. Such a plot is
called a time series plot.

b) Use the groups argument (and perhaps type=c(’p*,’1’), too) to make the
different months of the year distinguishable in your scatterplot.

c) Now make a boxplot of gas usage (ccf) vs. factor(month). Which months
are most variable? Which are most consistent?

d) What patterns do you see in the data? Does there appear to be any change
in gas usage over time? Which plots help you come to your conclusion?

1.22. Note that March and May of 2000 are outliers due to a bad meter reading.
Utility bills come monthly, but the number of days in a billing cycle varies from
month to month. Add a new variable to the utilities data set using

> utilities$ccfpday <- utilities$ccf / utilities$billingDays

> plotl <- xyplot( ccfpday ~ (year + month/12), utilities, groups=month )
> plot2 <- bwplot( ccfpday ~ factor(month), utilities )

Repeat the previous exercise using ccfpday instead of ccf. Are there any noticeable
differences between the two analyses?

1.23. Theutilities data set contains information from utilities bills for a personal
residence over a number of years. One would expect that the gas bill would be
related to the average temperature for the month.

Make a scatterplot showing the relationship between ccf (or, better, ccfpday;
see Exercise 1.22) and temp. Describe the overall pattern. Are there any outliers?
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