Laboratory 1c: Method of Least Squares

Introduction

Consider the graph of experimental data in Figure 1. In this experiment x is the independent variable and y the dependent variable. Clearly they are correlated with each other and the correlation seems to be linear. We would like to find the line of the form

$$
\begin{equation*}
y(x)=a+b x \tag{1}
\end{equation*}
$$

that best fits this data, [Which in truth actually consist of pairs of measurements $\left(x_{i}, y_{i}\right)$]. While we can eyeball the line it would be nice to have an objective well established method to determine the values for a and b. The most common method to do this is called the method of least squares.

Figure 1: Plot of Y versus X

Our task is to determine the coefficients a and b in such a way that the discrepancy between the values of our measurements y_{i}, and the corresponding fitted values $\mathrm{y}\left(\mathrm{x}_{\mathrm{i}}\right)$ are minimized. The best we can do is to determine the most probable estimates for coefficients using the data available. Note that this technique assumes

- that the uncertainties are all in the y variable and
- that the uncertainties follow Gaussian statistics

Uncertainties arising from fluctuations in repeated readings of an instrument's scale (caused by settings that are not exactly reproducible) are often Gaussian. These uncertainties are called instrumental regardless of whether they are due to equipment imperfections or to human imprecision.

Method of Maximum Likelihood

Our data consist of a sample of observations extracted from a parent population which determines the probability of making a particular observation. Let us define parent coefficients a_{0} and b_{0} such that the actual linear relationship between y and x is given by

$$
\begin{equation*}
y_{0}(x)=a_{o}+b_{0} x \tag{2}
\end{equation*}
$$

For any given value x_{i} we can calculate the probability density $\Omega_{i}(a, b)$ for making the observed measurement y_{i}, by assuming a Gaussian distribution about the actual value $\mathrm{y}_{0}\left(\mathrm{x}_{\mathrm{i}}\right)$ with a standard deviation $\sigma_{i}=\sigma$, i.e.

$$
\begin{equation*}
P\left(x_{i}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{\left(y_{i}-y_{0}\left(x_{i}\right)\right)^{2}}{2 \sigma^{2}}} \tag{3}
\end{equation*}
$$

The probability of making simultaneous measurements of all $N y_{i}$ is the product of these probabilities

$$
\begin{equation*}
\Omega\left(a_{0}, b_{0}\right)=\prod_{i=1}^{N} \Omega\left(x_{i}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\sum_{i=1}^{N} \frac{\left(y_{i}-y_{0}\left(x_{i}\right)\right)^{2}}{2 \sigma^{2}}} \tag{4}
\end{equation*}
$$

Of course, we do not know the parent distribution values for a_{0} and b_{0}, but for any estimated values of the coefficients a and b, we can calculate the probability density for making the observed set of measurements as

$$
\begin{equation*}
\Omega(a, b)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\sum \frac{\left(\Delta y_{i}\right)^{2}}{2 \sigma^{2}}} \tag{5}
\end{equation*}
$$

where $\Delta y_{i}=y_{i}-\left(a+b x_{i}\right)$.
The method of maximum likelihood consists of making the assumption that by maximizing equation (5) for the observed set of measurements we are most likely to obtain the best estimates for a_{0} and b_{0}. Maximizing the probability $\Omega(a, b)$ is equivalent to minimizing the sum in the exponential. We define the quantity chi squared, χ^{2}, to be the sum in the exponential:

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{N}\left(\frac{\Delta y_{i}}{\sigma}\right)^{2} \tag{6}
\end{equation*}
$$

We have used the same symbol χ, defined in Lab. 1b, because this is essentially the same definition in a different context. Our method for finding the optimum fit to the data will be to minimize this sum of squared deviations and, hence, to find the fit which produces the smallest χ^{2}.

Note: Our development assumes the error associated with any single measurement is the same for all measurements. Modifications to the development must be made when this is not so.

Minimizing χ^{2}

In order to find the values of the coefficients a and b which yield the minimum value for χ^{2} we use the methods of the calculus, i.e.

$$
\begin{equation*}
\frac{\partial \chi^{2}}{\partial a}=0 \tag{7}
\end{equation*}
$$

And

$$
\begin{equation*}
\frac{\partial \chi^{2}}{\partial b}=0 \tag{8}
\end{equation*}
$$

Rearranged these equations yields a pair of simultaneous equations to be solved for the coefficients a and b. This will give us the values of the coefficients for which χ^{2} is minimized. This is done with the determinants below. In these equations be sure to distinguish the difference between the square of the sum of $\mathrm{x}_{\mathrm{i}},\left(\sum x_{i}\right)^{2}$, and the sum of the squares of $\mathrm{x}_{\mathrm{i}}, \sum x_{i}^{2}$:

$$
\begin{gather*}
a=\frac{1}{\Delta}\left(\sum x_{i}^{2} \sum y_{i}-\sum x_{i} \sum x_{i} y_{i}\right) \\
b=\frac{1}{\Delta}\left(N \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}\right) \tag{9}\\
\Delta=N \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}
\end{gather*}
$$

Estimation of Errors

In order to find the uncertainty in the estimation of the coefficients a and b in our fitting procedure, we refer to our discussion of the propagation of errors in Laboratory 1. Each of our data points y_{i} have been used in the determination of the parameters, and each has contributed some fraction of its own uncertainty to the uncertainty in our final determination. Ignoring systematic errors which would introduce correlations between the uncertainties, the standard deviation σ_{z} of the determination of any parameter z is given by

$$
\begin{equation*}
\sigma_{z}^{2}=\sum_{i=1}^{N} \sigma_{i}^{2}\left(\frac{\partial z}{\partial y_{i}}\right)^{2}=\sigma_{i}^{2} \sum_{i=1}^{N}\left(\frac{\partial z}{\partial y_{i}}\right)^{2} \tag{10}
\end{equation*}
$$

If we assume that the uncertainties are instrumental and all the same, they can be estimated from the data. Our definition in Laboratory 1 of the sample variance s^{2}, which approximates σ^{2}, is the
sum of the squares of deviations of the data points from the calculated mean divided by the number of degrees of freedom. In this case, the number of degrees of freedom is the number of data points N minus the number of parameters (two) which we determined before calculating s^{2}. Thus, our estimated parent standard deviation $\sigma_{i}=\sigma$ is

$$
\begin{equation*}
\sigma^{2} \cong s^{2}=\frac{1}{N-2} \sum_{i=1}^{N}\left(y_{i}-a-b x_{i}\right)^{2} \tag{11}
\end{equation*}
$$

Note that it is this common uncertainty, σ, which we have minimized by our least-squares fitting procedure. The derivatives in equation (10) can be evaluated by taking the derivatives of equations (9), and we can find an expression for the uncertainties in parameters a and b, i.e.

$$
\begin{align*}
& \sigma_{a}^{2} \cong \frac{\sigma^{2}}{\Delta} \sum x_{i}^{2} \tag{12}\\
& \sigma_{b}^{2} \cong \frac{N \sigma^{2}}{\Delta}
\end{align*}
$$

It may not be obvious from these forms, but the larger the number of data points the smaller is the error in the quantities a and b.

Using R to graph and do least squares regression-A follow along example.

The two most important commands are $g f _p o i n t$ for graphing and $I m$ for fitting a linear model. At their most basic they have the syntax: gf_point($Y^{\sim} X$, data=data_frame) and $\operatorname{Im}\left(Y^{\sim} X\right.$, data=data_frame). An example is useful, we will use the rubberband dataset that comes as part of R. First we must bring fastR2 and rubberband into our current session:

- require(fastR2)
- data(rubberband)

Next we will look at the structure of the dataset:

- head(RubberBand)

Graphing

From this you will see that there are two variables: Stretch and Distance. Stretch is the one we have control over so it is the independent variable and Distance is the dependent. Use gf_point to graph the data, use the variable names separated by a tilde and specify the data as coming from the data_frame RubberBand.

- gf_point(distance~stretch, data=RubberBand, xlab="Stretch (cm)", ylab="Distance (cm)")

Lab 1c, Least Squares
Where distance is the dependent variable and stretch is the independent variable.
To insert the regression line on the same graph:

- gf_point(distance~stretch, data=RubberBand, xlab="Stretch (cm)", ylab="Distance (cm)") \%>\% gf_Im()

Fitting

It is useful to see the least-squares regression line graphed with the data to make decisions about how meaningful the fit is, but it is useful to know the coefficients in the equation for the line

$$
\begin{equation*}
\text { Distance }=a+b \text { Stretch. } \tag{13}
\end{equation*}
$$

Try using Im:

- Im(distance ${ }^{\sim}$ stretch, data=RubberBand)

This gives the most basic information, the intercept (a) and the slope for the Stretch variable (b). We can extract more information if we look at the linear model's summary:

- summary(Im(distance~stretch, data=RubberBand))

This gives a variety of information including estimates for the coefficients with their uncertainties ($a=100+/-20, b=52+/-4$), probabilities that the coefficients values could be explained by chance instead of a real correlation (1.3e-3\% for a and $7.4 \mathrm{e}-7 \%$ for b) and an estimate of the variance in the parent distribution, s^{2}, which is reported as the residual standard error ($s^{2}=19.15$). Even more valuable than s is the R^{2} value which gives the percent of the variance in the data that is explained by the model ($R^{2}=0.91$). A model that does a perfect job will have $\mathbf{R}^{2}=1$.

Experimental Procedure for the General Case

Given the data shown in Table 1 below:

Table 1: Experimental data for temperature versus position along a rod

Trial	$\mathrm{X}_{\mathrm{i}}(\mathrm{cm})$	$\mathrm{T}_{\mathrm{i}}\left({ }^{\circ} \mathrm{C}\right)$
1	1.0	15.6
2	2.0	17.5
3	3.0	36.6
4	4.0	43.8
5	5.0	58.2
6	6.0	61.6
7	7.0	64.2
8	8.0	70.4
9	9.0	98.8

1. Determine the best parameters a and b to the equation $\mathrm{T}_{\mathrm{i}}=a+b \mathrm{x}_{\mathrm{i}}$. Note that we are assuming that all of the error is associated with a measurement of temperature, not length.
2. Determine the standard deviation of the temperature data.
3. Determine the errors associated with a and b.
4. Express the thermal gradient in a manner suitable for reporting; i.e., the slope of the line.
5. Plot the data and fit.
6. Assume the thermometer has $1^{\circ} \mathrm{C}$ markings $\left(\Delta \mathrm{T}=0.5^{\circ} \mathrm{C}\right)$. How does this compare to s ?

Lab 1c, Least Squares

Specific Case for Constraint $a=0$

An important subset of the general problem discussed above is the linear function constrained to pass through the origin, i.e.

$$
\begin{equation*}
y(x)=c x \tag{14}
\end{equation*}
$$

This is a linear problem but it represents a function which has a y intercept of zero. We follow the same approach as above starting with the definition of χ^{2}, and we proceed as in the previous section and find the minimum of χ^{2} with respect to c by letting:

$$
\begin{equation*}
\frac{\partial \chi^{2}}{\partial c}=0 \tag{15}
\end{equation*}
$$

The standard deviation associated with a data point y_{i} in this case is

$$
\begin{equation*}
\sigma^{2} \cong s^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-c x_{i}\right)^{2} \tag{16}
\end{equation*}
$$

where the $\mathrm{N}-1$ factor appears instead of $\mathrm{N}-2$ since we have only used the data once to determine c . To find the error in the slope we find the change in c with respect to $\mathrm{y}_{\text {}}$, i.e. $\frac{\partial c}{\partial y_{i}}$, then we obtain

$$
\begin{equation*}
\sigma_{c}=\frac{\sigma}{\sqrt{\sum_{i=1}^{N} x_{i}^{2}}} \tag{17}
\end{equation*}
$$

Thus, equations (15), (16), and (17) provide us with the linear least squares fit of data constrained to go through the origin.

Experimental Procedure for the Specific Case of Data Passing Through the Origin

Measuring π :

You are given a set of aluminum disks with different diameters.

1. Devise a technique for measuring the circumference of the disk and label these data points as circ ${ }^{\text {. }}$
2. Determine the best parameter p fit to the equation $\operatorname{circ}_{i}=p$ diam $_{i}$. In R this is done by giving the intercept an explicit value of 0

- Disk.model<-Im(circ~diam+0, data=Disk)

Note that we are choosing to treat the diameter as the independent variable, this is arbitrary and is equally valid the other way around.
3. Determine the standard deviation associated with each circi.
4. Determine the error associated with p.
5. Use your model to predict a circumference based on the model for a diameter of 10 cm .

- pData<-predict(Disk.model, newdata=data.frame(diam=10))

6. Use your model to predict a circumference for all diameters in your dataset.
7. Use the results of step 6 to plot the data and the intercept=0 fit,

- gf_point(circ~diam,data=Disk) \%>\% gf_line(pData~diam, data=Disk, color="red")

8. Record the best fit parameter for the slope, p, as well as for the estimated error in the slope. Compare to the known value of π and discuss the significance of your results for the goodness of your data.

Ohm's Law:

You are given a voltage supply, a decade resistor box, an analog current meter, and a digital volt meter. Set the analog current meter to the 25 milliamp scale and the decade resistor box to 10 ohms. Use the digital meter to record the resistance of the decade resistor box at this setting when it is not yet connected to anything else. Now, connect the voltage supply, the resistor box, and the current meter into a simple series circuit. Place the digital volt meter in parallel across the terminals of the voltage supply and set it to measure DC voltages up to 200 mV . Using this set up:

1. Measure and record the current through the resistor as well as the voltage of the power supply for at least 10 different voltages between 20 and 200 mV . (NOTE: be sure not to exceed 200 mV so as not to damage the current meter).
2. Plot the voltage versus current data you collected using R and find what it determines to be the best fit parameter for the slope as well as the estimated uncertainly in the slope. Make sure to constrain the intercept to zero when fitting the line to your data.
3. Using Ohm's Law ($\mathrm{V}=\mathrm{IR}$), compare what you found from the graph for the resistance of the decade resistor box to what the digital meter found it to be. If they do not agree within the level of your experimental precision, discuss possible reasons for the differences. Where possible cite specific measurements or estimated values taken from the laboratory that support your suppositions for the sources of the error (i.e. do not just say human error in reading the meters and leave it at that.)

WHEN YOU FINISH: LEAVE THINGS AS YOU FOUND THEM!

