
 

 

Laboratory 9: The Viscosity of Liquids 

Introduction 
 The essential difference between solids and fluids lies in the nature of their response to the so-

called shearing stress. In solids, an elastic force places a limit upon the amount of shear produced by 

a given shearing stress. In liquids, the deformation resulting from a constant shearing stress of any 

magnitude, however small, increases without limit. In other words, the shear modulus for fluids is 

zero, and they may be said to offer no permanent resistance to shear. 

 Fluids do, however, differ in their 

rate of yield under the influence of a 

shearing stress. Common experience 

teaches, for example, that some liquids 

pour more readily than others. The 

movement of a fluid may be thought of 

as the slipping of adjacent layers over 

one another, and the internal friction 

between contiguous layers is called the 

viscosity. Thus, while a fluid in motion 

resists a shearing stress with a frictional force which tends to retard the flow, this force disappears 

when the flow ceases. 

 In Figure 1, let the parallelepiped represent a small element of volume in a fluid which is flowing 

horizontally.  At equilibrium, a shearing stress F/A on the upper surface causes the upper surface to 

travel at a faster velocity dv, where F is the horizontal force on the top surface, A is the area of the 

horizontal cross section, and dr is the distance between the two surfaces.  In a time dt, the upper surface 

will have slipped a distance dtdv  .  The shear angle is 
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The rate of shear or velocity gradient is then 
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For streamline motion (no turbulence) the ratio between shearing stress and velocity gradient for a 

Figure 1The force F causing a fluid element to shear. 



 

 

given fluid is found to be constant for many fluids (Newtonian Fluids). This is called the “coefficient 

of viscosity” or simply the “viscosity”.  This constant is 

drdv
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The c.g.s. unit of viscosity is called the poise; it is the viscosity of a substance that acquires a unit 

velocity gradient under the influence of a shearing stress of 1 dyne/cm2. 

 In the co-axial cylinder method of determining 

the coefficient of viscosity, it is convenient to take 

as an element of volume a cylindrical section 

instead of a parallelopiped.  The movement then 

consists of the rotation of concentric cylindrical 

layers about one another.  In Figure 2, let the 

dotted line SS' represent an imaginary cylindrical 

boundary lying within the liquid enclosed between 

the two cylinders A and B.  For simplicity, 

consider the inner cylinder to be stationary and the 

outer one to rotate with an angular velocity, ωB, the result will be the same for the reverse case.  If 

the liquid adheres to the walls of the cylinders (doesn’t slip at the wall), a shearing takes place in 

which concentric cylindrical layers of the liquid slip over each other, the angular velocity increasing 

progressively from zero at the stationary cylinder to ωB at the rotating one.  The linear velocity of the 

intermediate surface SS' is v = ωr, where 0 < ω < ωB.  The velocity gradient at SS' is then  
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The first term on the right represents the uniform rotation of a solid, thus, it can be ignored.  The 

second term represents the effect of slippage and is the velocity gradient.  Thus, Eq. 3 can be written 

in terms of r and ω rather than v  
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If the torque applied to the rotating cylinder is τ, the tangential force sustained by the layer of liquid 

in contact with the cylinder is τ/b, and that at any boundary SS' is τ/r.  Since the area of this 

cylindrical boundary is 2πrl, the tangential force per unit area is τ/2πr2l where l is the vertical length 

of cylinder in contact with the fluid.  Substituting yields  

Figure 2 A fluid element better suited to this experiment. The 

bulk of the fluid sits between cylinder A and cylinder B. 
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or by separating differentials 
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To find the equilibrium rotational velocity of the outer cylinder we must integrate this equation 

between the inner and outer cylinders; i.e., between the limits r = a and r = b.  Thus,  
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Where ωB is the rate of rotation of the outer cylinder. This simplifies to   
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The coefficient η is thus determined from the dimensional constants of the apparatus and the 

experimentally determined ratio τ/ωB.  The above result is equally valid if it is the inner cylinder 

which is rotating, since it is relative velocity that is important. 

Apparatus 
 The viscosimeter employed in this experiment is illustrated 

in Figure 3.  It consists of two metal cylinders A and B of radii 

a and b, respectively, mounted co-axially.  The inner cylinder A 

rests on a bearing so as to rotate with very little friction inside 

the stationary cylinder B, the liquid under investigation being 

contained in the space between the cylinders.  Attached to the 

shaft of A is a drum D around which is wrapped a fine cord that 

passes over a pulley W attached to a mass m.  The shearing 

torque is given by the product of the gravitational force on the 

mass m and radius k of the drum; i.e., τ = mgk. 

 A removable cover C consists of an aluminum bracket 

which contains an upper bearing for the rotary cylinder.  Two screw clamps N hold the bracket in 

place, accurately centering the shaft.  The cylinder A may be locked in position by means of a key K 

which enters a hole in the drum.  The viscosimeter is equipped with an electrical heating element 

enclosed in a jacket surrounding the outer cylinder. 

 In operation, the inner cylinder will start from rest and obtain a terminal rotational velocity, ωB, 

at which the viscous restraint just balances the applied torque. Note that, the angular velocity and 

translational velocity are related; e.g., ωB = v/k. 

Figure 3 The viscosity apparatus with 

relevant dimensions defined. 



 

 

 Measure the translational velocity of the string using a photogate-pulley combination and a 

Vernier computer interface. 

 Finally, in the foregoing discussion it was assumed that the only viscous resistance involved is 

that exerted by the liquid between the cylindrical surfaces.  However, there is an additional torque 

due to the viscous drag over the ends.  The magnitude of this effect depends upon the radii of the 

two cylinders and the distance between their closed ends.  If the cylinder is totally immersed, the end 

effect can be treated as a correction to the length of the cylinder.  To account for this add an effective 

length e to the length 1 in equation (9). 

 Substituting all of these relationships into equation (9) gives  
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or more succinctly 

𝜂 = 𝐺
𝐹𝑔
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where 𝐺 =
(𝑏2−𝑎2) 𝑘2

4 𝜋 𝑎2 𝑏2 
 is a dimensionless constant determined by the geometry of the problem and 

𝐹𝑔 = 𝑚𝑔 is the force of gravity. 

Procedure 
You will perform three distinct experiments with this apparatus on SAE60 motor oil. From the first 

you will determine both the viscosity of the fluid at room temperature and the size of the end 

correction. In the second experiment you will test assumption in Eq. (3) that the fluid is a Newtonian 

fluid (as opposed to shear thinning or shear thickening). In the third experiment you will measure 

how the viscosity changes with temperature.  

End Correction Determination 
 At constant temperature we expect the viscosity to be constant.  If the mass and physical 

dimensions of the apparatus remain fixed, then equation (10) implies 1/v should be inversely 

proportional to the corrected height of the fluid; i.e., 1/𝑣 ∝ (𝑙 + 𝑒).  By making a series of 

measurements for different fluid levels, one should be able to plot 1/v vs l and determine the end 

correction e from the x-intercept and the viscosity, η, from the slope. 

1. Locate the apparatus shown in Fig. 3 and carefully measure and record the dimensions a, b, 

k, and lo(use a caliper).  Reassemble the apparatus, taking care that the cylinder turns freely 

on its pivot points.  Thread the string over the pulley as shown the photogate pulley and lock 

the drum. Use a mass hook to apply weight to the string. 

2. With a dropper, add liquid until the level is about 1.5 cm above the lower end of the cylinder 



 

 

and measure the immersed length, l.  This requires care.  One method is to use the inner 

cylinder as a dipstick, withdraw the inner cylinder and, holding it so as to drain fluid back 

into the outer cylinder, make a measurement of the fluid level on the cylinder. 

3. If you have removed it, replace the cylinder and lock in place.  Hang 25 gm on the string. 

4. Release the cylinder and observe velocity of the falling mass.  You should wind the string up 

so that the mass, in falling, has a chance to reach its terminal velocity.  You will also find it 

convenient to stop the drum after it has reached terminal velocity but before the string comes 

loose from the drum, thus saving yourself the trouble of rethreading the string. 

5. Record the average velocity and uncertainty restricting your attention to the period of time 

that the weight/string are moving at a constant speed. 

6. Make a series of at least 10 observations, keeping the mass constant, but increasing the 

effective length of the cylinder by adding fluid. The maximum oil depth should be 1mm shy 

of the inner cylinder’s top. 

7. Make a plot of 1/v vs l and apply a linear fit. From the fit determine the end correction and 

the viscosity in cgs units. 

Variation with Mass 
1. With the level of the liquid at the top of the inner cylinder, take a series of ten observations, 

varying the mass from 25 to 150 gm. 

2. Use Eq. 10 and the end correction from the first experiment to determine the viscosity for 

each data point. 

3. Plot viscosity vs applied torque. 

4. Does the viscosity appear to depend on the torque? How can you test this rigorously? 

5. Measure the temperature of the fluid. 

6. Calculate your best value for viscosity at that temperature. 

Variation with Temperature 
 From practical experience you know that fluids become less viscous with an increase in 

temperature (e.g., warm liquids flow more easily than cold ones). This follows from the fact that 

with temperature increase the fluid molecules become more agitated and therefore have a larger 

equilibrium separation, thus, the shear forces are less. 

1. Attach a 50 gm mass and keep this constant throughout the experiment. 

2. Measure the temperature and take a set of time readings. 

3. Plug the viscosimeter into the variac and set the variac to 100 VAC.  Surround the cylinder 



 

 

with a number of foam insulating blocks to help stabilize the temperature of the system.  

Leave the thermometer in the fluid and observe the temperature.  When the temperature 

reaches just over 70oC, unplug the variac.  Adjust the fluid level to nearly cover the cylinder. 

4. Take a set of time readings when the temperature stabilizes at 70oC.  

5. As the temperature falls, take new sets of time readings at 5oC intervals down to within 5oC 

of your starting temperature.  

6. Calculate the viscosity of the fluid as a function of temperature.  Plot your results. 

7. The fluid you are using is Pennzoil SAE 60 racing motor oil.  The book values for the 

viscosity of the oil is 207 centipoise (cp) at 40oC and 15.1 centipoise (cp) at 100oC.  Plot and 

compare the book values with your results. 

  

 

 

 

 

DRAIN THE FLUID.  WIPE OFF THE CYLINDER.  LEAVE THINGS AS YOU FOUND 

THEM. 

 

 

 


