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Laboratory 1c: Method of Least Squares 

Introduction 
 Consider the graph of experimental data in Figure 1. In this experiment x is the independent 

variable and y the dependent variable. Clearly they are correlated with each other and the correlation 

seems to be linear. We would like to find the line of the form 

𝑦(𝑥) = 𝑎 + 𝑏𝑥      (1) 

that best fits this data, [Which in truth actually consist of pairs of measurements (xi, yi)]. While we can 

eyeball the line it would be nice to have an objective well established method to determine the values 

for a and b. The most common method to do this is called the method of least squares. 

 

Figure 1: Plot of Y versus X 

Our task is to determine the coefficients a and b in such a way that the discrepancy between the values 

of our measurements yi, and the corresponding fitted values y(xi) are minimized.  The best we can do is 

to determine the most probable  estimates for coefficients using the data available. Note that this 

technique assumes  

 that the uncertainties are all in the y variable and  

 that the uncertainties follow Gaussian statistics 

Uncertainties arising from fluctuations in repeated readings of an instrument's scale (caused by settings 

that are not exactly reproducible) are often Gaussian. These uncertainties are called instrumental 

regardless of whether they are due to equipment imperfections or to human imprecision. 



 

 

Method of Maximum Likelihood 
 Our data consist of a sample of observations extracted from a parent population which 

determines the probability of making a particular observation.  Let us define parent coefficients ao and 

bo such that the actual linear relationship between y and x is given by 

xbaxy o 00 )(                  (2) 

For any given value xi we can calculate the probability density Ω𝑖(𝑎, 𝑏) for making the observed 

measurement yi, by assuming a Gaussian distribution about the actual value yo(xi) with a standard 

deviation 𝜎𝑖 = 𝜎 , i.e. 
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The probability of making simultaneous measurements of all N yi is the product of these probabilities 
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 Of course, we do not know the parent distribution values for ao and bo, but for any estimated 

values of the coefficients a and b, we can calculate the probability density for making the observed set 

of measurements as 
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where Δyi = yi - (a + bxi).   

 The method of maximum likelihood consists of making the assumption that by maximizing 

equation (5) for the observed set of measurements we are most likely to obtain the best estimates for ao 

and bo. Maximizing the probability Ω(𝑎, 𝑏) is equivalent to minimizing the sum in the exponential.  We 

define the quantity chi squared, 𝜒2, to be the sum in the exponential: 
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We have used the same symbol 𝜒, defined in Lab. 1b, because this is essentially the same definition in a 

different context. Our method for finding the optimum fit to the data will be to minimize this sum of 

squared deviations and, hence, to find the fit which produces the smallest 𝜒2. 
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Note:  Our development assumes the error associated with any single measurement is the same for all 

measurements.  Modifications to the development must be made when this is not so. 

Minimizing χ2 
 In order to find the values of the coefficients a and b which yield the minimum value for 𝜒2 we 

use the methods of the calculus, i.e.  

𝜕𝜒2

𝜕𝑎
= 0 

       (7) 

And 

𝜕𝜒2

𝜕𝑏
= 0 

       (8) 

Rearranged these equations yields a pair of simultaneous equations to be solved for the coefficients a 

and b.  This will give us the values of the coefficients for which 𝜒2 is minimized.  This is done with the 

determinants below.  In these equations be sure to distinguish the difference between the square of the 

sum of xi, (∑ 𝑥𝑖)2, and the sum of the squares of xi,  ∑ 𝑥𝑖
2: 

𝑎 =
1

Δ
(∑ 𝑥𝑖

2 ∑ 𝑦𝑖 − ∑ 𝑥𝑖 ∑ 𝑥𝑖𝑦𝑖)

𝑏 =
1

Δ
(𝑁 ∑ 𝑥𝑖𝑦𝑖 − ∑ 𝑥𝑖 ∑ 𝑦𝑖)

Δ = 𝑁 ∑ 𝑥𝑖
2 − (∑ 𝑥𝑖)2

     (9) 

Estimation of Errors 
 In order to find the uncertainty in the estimation of the coefficients a and b in our fitting 

procedure, we refer to our discussion of the propagation of errors in Laboratory 1.  Each of our data 

points yi have been used in the determination of the parameters, and each has contributed some 

fraction of its own uncertainty to the uncertainty in our final determination.  Ignoring systematic errors 

which would introduce correlations between the uncertainties, the standard deviation σz of the 

determination of any parameter z is given by 
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 If we assume that the uncertainties are instrumental and all the same, they can be estimated 

from the data.  Our definition in Laboratory 1 of the sample variance s2, which approximates σ2, is the 



 

 

sum of the squares of deviations of the data points from the calculated mean divided by the number of 

degrees of freedom.  In this case, the number of degrees of freedom is the number of data points N 

minus the number of parameters (two) which we determined before calculating s2.  Thus, our estimated 

parent standard deviation σi = σ is 

 






N

i

ii bxay
N

s
1

222

2

1
      (11) 

Note that it is this common uncertainty, σ, which we have minimized by our least-squares fitting 

procedure. The derivatives in equation (10) can be evaluated by taking the derivatives of equations (9), 

and we can find an expression for the uncertainties in parameters a and b, i.e. 
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It may not be obvious from these forms, but the larger the number of data points the smaller is the error 

in the quantities a and b. 

Using R to graph and do least squares regression—A follow along 

example. 
The two most important commands are xyplot for graphing and lm for fitting a linear model. At their 

most basic they have the syntax: xyplot(Y~X, data=data_frame) and lm(Y~X, data=data_frame). An 

example is useful, we will use the rubberband dataset that comes as part of R. First we must bring fastR 

and rubberband into our current session: 

 require(fastR) 

 data(rubberband) 

Next we will look at the structure of the dataset: 

 head(rubberband) 

Graphing 
From this you will see that there are two variables: Stretch and Distance. Stretch is the one we have 

control over so it is the independent variable and Distance is the dependent. Use xyplot to graph the 

data, use the variable names separated by a tilde and specify the data as coming from the data_frame 

rubberband. 

 xyplot(Distance~Stretch, data=rubberband, xlab=”Stretch (cm)”, ylab=”Distance (cm)”) 



Lab 1c, Least Squares 

 

Where Distance is the dependent variable and Stretch is the independent variable. By default xyplot() 

has used type ‘p’ (for point). We can make this explicit:  

 xyplot(Distance~Stretch, data=rubberband, type=c(‘p’))  

Other types exist, the type that is relevant here is ‘r’ for regression. 

 xyplot(Distance~Stretch, data=rubberband, type=c(‘r’)) 

Even better is to use both on the same graph: 

 xyplot(Distance~Stretch, data=rubberband, type=c(‘p’, ‘r’)) 

 

And to finish it off error bars using an uncertainty of s=5cm 

 

 s<-5 

 xyplot(Distance~Stretch, rubberband, lb=rubberband$Distance-s,ub= rubberband$Distance+s,  

     panel=function(x, y, lb, ub, …){ 

         panel.xyplot(x, y, type=c(’p’,’r’), …) 

         panel.segments(x0=x, x1=x, y0=lb, y1=ub, …) 

     } 

 ) 

Note that an error bar about a data point reflects the probability that another measurement would 

reproduce the first value within one standard deviation 66% of the time.   

Fitting 
It is useful to see the least-squares regression line graphed with the data to make decisions about how 

meaningful the fit is, but it is useful to know the coefficients in the equation for the line 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑎 + 𝑏 𝑆𝑡𝑟𝑒𝑡𝑐ℎ.     (13) 

Try using lm: 

 lm(Distance~Stretch, data=rubberband) 

This gives the most basic information, the intercept (a) and the slope for the Stretch variable (b). We can 

extract more information if we look at the linear model's summary: 

 summary(lm(Distance~Stretch, data=rubberband)) 

This gives a variety of information including estimates for the coefficients with their uncertainties 

(a=100+/- 20, b=52+/-4), probabilities that the coefficients values could be explained by chance instead 



 

 

of a real correlation (1.3e-3% for a and 7.4e-7% for b) and an estimate of the variance in the parent 

distribution, s2, which is reported as the residual standard error (s2=19.15). Even more valuable than s is 

the R2 value which gives the percent of the variance in the data that is explained by the model (R2=0.91). 

A model that does a perfect job will have  R2=1. 

Experimental Procedure for the General Case 

Given the data shown in Table 1 below: 

Table 1: Experimental data for temperature versus position along a rod 

Trial Xi (cm) Ti (
oC) 

1 1.0 15.6 

2 2.0 17.5 

3 3.0 36.6 

4 4.0 43.8 

5 5.0 58.2 

6 6.0 61.6 

7 7.0 64.2 

8 8.0 70.4 

9 9.0 98.8 

 

1. Determine the best parameters a and b to the equation Ti = a + bxi.  Note that we are assuming 

that all of the error is associated with a measurement of temperature, not length. 

2. Determine the standard deviation of the temperature data. 

3. Determine the errors associated with a and b. 

4. Express the thermal gradient in a manner suitable for reporting; i.e., the slope of the line. 

5. Plot the data and fit. 

6. Use the residual standard error, s2, to draw error bars on each data point of temperature ± s. 

7. Assume the thermometer has 1oC markings (ΔT = 0.5oC).  How does this compare to s?  
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Specific Case for Constraint a = 0 
 An important subset of the general problem discussed above is the linear function constrained to 

pass through the origin, i.e.  

𝑦(𝑥) = 𝑐 𝑥      (14) 

This is a linear problem but it represents a function which has a y intercept of zero.  We follow the same 

approach as above starting with the definition of 𝜒2, and we proceed as in the previous section and find 

the minimum of 𝜒2 with respect to c by letting: 
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 The standard deviation associated with a data point yi in this case is  
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where the N - 1 factor appears instead of N - 2 since we have only used the data once to determine c.  

To find the error in the slope we find the change in c with respect to yi, i.e. 
𝜕𝑐

𝜕𝑦𝑖
, then we obtain 

𝜎𝑐 =
𝜎

√∑ 𝑥𝑖
2𝑁

𝑖=1

      (17) 

Thus, equations (15), (16), and (17) provide us with the linear least squares fit of data constrained to go 

through the origin. 

Experimental Procedure for the Specific Case of Data Passing Through 

the Origin 

Measuring : 
You are given a set of aluminum disks with different diameters.  

1. Devise a technique for measuring the circumference of the disk and label these data points as 

circi. 

2. Determine the best parameter p fit to the equation circi = p diami.  In R this is done by giving the 

intercept an explicit value of 0 

 Disk.model<-lm(circ~diam+0, data=Disk) 



 

 

Note that we are choosing to treat the diameter as the independent variable, this is arbitrary 

and is equally valid the other way around. 

3. Determine the standard deviation associated with each circi. 

4. Determine the error associated with p. 

5. Use your model to predict a circumference based on the model for a diameter of 10cm. 

 pData<-predict(Disk.model, newdata=data.frame(diam=10)) 

6. Use your model to predict a circumference for all diameters in your dataset. 

7. Use the results of 7 to plot the data and the intercept=0 fit, 

 xyplot(circ+pData~diam,data=Disk, type=’p’) 

8. Record the best fit parameter for the slope, p, as well as for the estimated error in the slope. 

Compare to the known value of and discuss the significance of your results for the goodness of 

your data. 

Ohm’s Law: 
You are given a voltage supply, a decade resistor box, an analog current meter, and a digital volt meter.  

Set the analog current meter to the 25 milliamp scale and the decade resistor box to 10 ohms.  Use the 

digital meter to record the resistance of the decade resistor box at this setting when it is not yet 

connected to anything else.  Now, connect the voltage supply, the resistor box, and the current meter 

into a simple series circuit.  Place the digital volt meter in parallel across the terminals of the voltage 

supply and set it to measure DC voltages up to 200 mV.  Using this set up:  

1. Measure and record the current through the resistor as well as the voltage of the power supply 

for at least 10 different voltages between 20 and 200 mV. (NOTE: be sure not to exceed 200 mV 

so as not to damage the current meter). 

2. Plot the voltage versus current data you collected using R and find what it determines to be the 

best fit parameter for the slope as well as the estimated uncertainly in the slope.  Make sure to 

constrain the intercept to zero when fitting the line to your data. 

3. Using Ohm’s Law (V=IR), compare what you found from the graph for the resistance of the 

decade resistor box to what the digital meter found it to be.  If they do not agree within the 

level of your experimental precision, discuss possible reasons for the differences.  Where 

possible cite specific measurements or estimated values taken from the laboratory that support 

your suppositions for the sources of the error (i.e. do not just say human error in reading the 

meters and leave it at that.) 

 

WHEN YOU FINISH: LEAVE THINGS AS YOU FOUND THEM! 


