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Laboratory 1b: Goodness of Fit - The χ2 
test 

Introduction 
 Imagine that you have a quantity, x, that you wish to measure. Let us assume that you have taken 

Lab. 1a to heart and have made N measurements of x and calculated the mean, standard deviation, and 

error in the mean for your data. As you have decided to measure x because you wish to test some 

hypothesis. Perhaps you expect x to have a particular value or perhaps you expect x to have a particular 

standard deviation. The question at hand is this: Does your data support your hypothesis. 

 To answer this question you will need to assume a theoretical distribution which you believe applies 

(Gaussian, Poisson, or Binomial). Make this assumption based on your knowledge of the experiment and 

how that will affect the dispersion of values about the mean.  You can then use this theoretical 

probability distribution, P(xj), to predict the theoretical frequency, 

 

𝐹(𝑥𝑗) = 𝑁𝑃(𝑥𝑗)      (1) 

 

for any value xj. Note that F(xj) will have the same spread as our data if our assumed distribution was 

correct. 

 It is important to recognize that with our finite number of measurements we cannot expect the 

theoretical frequency, F(xj), to be exactly equal the measured frequency, f(xj), in any given interval. 

Rather we would expect 𝐹(𝑥𝑗)  ≅  𝑓(𝑥𝑗) and that the deviation between the experimental frequency 

and assumed theoretical frequency to be statistical in nature. That is to say, we expect 𝑓(𝑥𝑗) − 𝐹(𝑥𝑗) to 

be given by some statistical error 𝜎(𝑓(𝑥𝑗)) associated with measuring f(xj); i.e. 

 )()()( jjj xfxFxf       (2) 

The key question is: what are the expected values for 𝜎[𝑓(𝑥𝑗)]? To understand this, consider what 

happens if we were to replicate the experiment.  Next time arround the N measurements will be 

distributed in a slightly different way because of the random nature of errors.  A large number, m, of 
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replicates of the experiment would yield a discrete distribution of possible frequencies for each value xj. 

Example 1—a follow along example: 
Consider again the large data set from Lab. 1a involving a block  (see 

http://facultyweb.cortland.edu/douglas.armstead/S15/Intermediate/block.csv), a histogram of the 

width data appears in Fig. 1. The histogram was produced using hist() [a similar graph can be made with 

histogram() using type=’count’ but it doesn’t give such a nice bin width in this example]. 

 

Figure 1: Histogram of block widths from the data_frame thisBlock. 

Table 1 is a frequency table, f, for the data and requires more effort to construct1. We must create a set 

of bins, x, and chose their edges. We use the sequence command, seq(), to create the bins and then cut 

up our data among the bins: 

 x<-seq(18, 22, by=0.5) 

 f<-table(cut(blockB$width, breaks=x)) 

                                                           

1
 A fully functioning script appears at the end of these lab instructions. 

http://facultyweb.cortland.edu/douglas.armstead/S15/Intermediate/block.csv
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Note that f is 𝑓(𝑥𝑗). 

Interval Frequency 

(18, 18.5] 4 

(18.5, 19] 53 

(19, 19.5] 232 

(19.5, 20] 380 

(20, 20.5] 252 

(20.5, 21] 69 

(21, 21.5] 9 

(21.5, 22] 1 

Table 1, frequencies, f=f(xj) for the data set blockB$width. 

Because of the measurement process, we expected a Gaussian distribution for the width of the block. 

Calculating the mean and standard deviation of the data and using it in a Gaussian/normal distribution 

determines the theoretical observation rate, 𝐹(𝑥𝑗).   

 mw=mean(blockB$width) 

 sw=sd(blockB$width) 

 n<-length(blockB$width) 

 px<-pnorm(x, mw, sw) 

Note that 𝑝𝑥 ≠ 𝐹(𝑥𝑗), rather it is the probability that a measured value is less than xj. To find F(xj) we 

need the new function diff(v,lag) which subtracts one element in the vector v from its neighbor the lag 

steps away, i.e., x[n+lag]-x[n]. 

 F<- n*diff(px,1) 

Note that F is F(xj).  

Motivating 𝝌𝟐 
Recall our plan to replicate the experiment. Consider a specific bin, the one labeled xj = 19 cm (and 

centered on 19.25cm). The frequency from table 1 measured for the interval xj = 19 cm was f(19cm) = 

232. If you were to make 12 more replicates of the experiment (each with 100 measurements) there 

would be a total of m = 13 replicates.  Figure 2 is a histogram showing the results of the replicates 

experiment with the different values that f(19cm) took in the m sets of replicates. Note that the total 
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number of outcomes fk(19cm) must equal the total number of replicates, i.e. Σfk(19cm)  =  m. The mean 

frequency is <k>=233.6.  It is reasonable to expect that the mean over all the replicates, 𝐹(19𝑐𝑚) ≅

233.6, is closer to the parent distribution’s mean value than any one replicate, including the first with 

f(19cm)=232. 

 

Figure 2: Frequency distribution for 13 replicates for bin 19cm. The mean, <k>=233.6. 

 An alternative to making replicates of our experiment to gain more information is to use our 

observations in each of the histogram bins for the data we have, (𝑥𝑗), and anticipating their distribution. 

Since f(xj) is discrete (i.e.,  each value is an integer) the distribution in Fig. 2 should be a  Poisson.  The 

theoretical prediction we made for f(xj) is F(xj) and should be a good estimate of the mean of the Poisson 

distribution. It immediately follows that the standard deviation is √𝐹(𝑥𝑗). Thus we expect, on average, 

[𝑓(𝑥𝑗) − 𝐹(𝑥𝑗)]
2

≅ 𝜎2 (𝑓(𝑥𝑗)) = 𝐹(𝑥𝑗)    (3) 

or 

 
1

)(

)()(
2




j

jj

xF

xFxf
     (4) 



Laboratory 1b, Goodness of Fit 

5 
 

 We should repeat the process for each of the n intervals xj. Summing all of these gives the χ2 value 

for our single replicate 
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If our assumption about the theoretical distribution is correct we would expect 𝜒2 ≅ 𝑛 for our dataset, 

(recall that n is the number of intervals and N is the number of measurements in a replicate).  More 

precisely we expect 𝜒2 ≅ 𝜈, where is the number of degrees of freedom for the histogram.   

o For a Gaussian distribution 𝜈 = 𝑛 − 2. The only way we can estimate the mean and standard 

deviation of the parent distribution is to assume they have the same value as the sample mean 

and the sample standard deviation. Both of these assumptions consume degrees of freedom.  

o For a Poisson distribution 𝜈 = 𝑛 − 1 since the data is used to determine the sample mean and 

the standard deviation immediately follows from that.   

o For a binomial distribution  𝜈 = 𝑛 as the data is not needed to determine the distribution. 

We can calculate 𝜒2in R as well as 𝜈, but it is useful to take it one step further and calculate the 

probability that random fluctuations are responsible for the differences we found between the observed 

𝑓(𝑥𝑗) and and theoretical 𝐹(𝑥𝑗) values. 

 data.chisq<-sum(((f-F)^2/F)) 

 df=length(f)-2 

 1-pchisq(data.chisq,df) 

The probability that random fluctuations are responsible for the difference between the observed 

frequencies and Gaussian frequencies is 0.863 or 86.3%. 

 The reduced 𝜒𝜐
2
 is defined as  

𝜒𝜐
2 =

𝜒2

𝜐
     (6) 

We expect 𝜒2 ≅ 𝜈 for a good fit or 𝜒𝜐
2 ≅ 1. If 𝜒𝜐

2 ≫ 1 then the deviations are larger than statistically 

predicted and we might question the validity of the choice of distribution. This corresponds to 1-

pchisq()<<1. If 𝜒𝜐
2 ≪ 1 then the deviations are smaller than statistically predicted and we might wonder 

if the deviations are indeed statistical, this is something that 1-pchisq() doesn’t do a good job of 

conveying. For the data set blockB $width  𝜒𝜐
2 = 0.42 which falls in the category 𝜒𝜐

2 ≅ 1. 

Example 2: A Fair Coin?    
Imagine trying to determine if a coin is fair or not. If the coin is fair, then the probability of getting heads 
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is p=0.5 and the probability of getting tails is q=0.5, if it is not fair p≠0.5 and q≠0.5. Since a coin has only 

two sides, q=1-p, this will have important consequences for testing our coin. If we toss the coin 100 

times, we will expect to get heads 100 × 0.5=50 times. We know, however, that while the probability of 

getting heads is 0.5, there is a significant chance that we would actually get a few more or a few less 

than 50 heads in 100 tosses. The question is, how much variation in the number of heads will we need 

to see before we are confident that someone is trying to cheat us? How much variation from the 

average do we need to reject the hypothesis that p=0.5? This is where the  Goodness of Fit test comes 

in handy. Imagine you now perform the experiment to test the hypothesis that the coin is fair, you toss 

the coin 100 times and observe that it landed on heads 38 times. From this data, the design of our 

experiment, and the nature of coins, we are able to determine that the coin must have landed on tails 

62 times and we note this in the Table 2.  

  Observed Expected 

Heads 38 50 

Tails 62 50 

Table 2: Observed and expected results of 100 coin tosses. 

With this data in our hands, we can compute a  test statistic and use it to determine the fairness of the 

coin. That is: 

 𝜒2 =
(38−50)2

50
+

(62−50)2

50
= 5.76      (7) 

In order to examine our value in the context of a distribution we calculate the total degrees of 

freedom, , by looking at the total number of parameters in our model, 2 (p and q), and subtracting 1 

because q is not independent from p since q=1- p:  

=total number of parameters-1     (8) 

𝜒𝜐
2 =

𝜒2

𝜐
     (9) 

In our case, and as a result 𝜒1
2 = 𝜒2 = 5.76. We found 𝜒𝜐

2 ≫ 1 and so the theoretical 

distribution cannot apply to our data. We must reject the hypothesis that the coin is fair. 

Third example: A Random Number?    
Imagine trying to determine if a random number generator is truly random or whether it has a bias that 
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makes some numbers come up more often than others. If the random number generator is unbiased, 

then the probability of getting any particular number should be 1/N where N is the total range of 

numbers the generator might produce. In this example we will be working with a random number 

generator that produces integers between 1 and 6 to simulate the dice that you used in the Lab 1. If the 

generator is unbiased each number should appear with a probability of 1/6 = 0.167.  As with the fair 

coin, however, we know there is a significant chance that we could get a few more or a few less than the 

average for any finite number of trials. This is where the  Goodness of Fit test comes into the 

experiment and will again help us answer the question of whether the variations we observe are 

consistent with the hypothesis that the probability is 0.167 for all six possible outcomes.   

Procedure 

Task 1 
 In Lab. 1a you constructed histograms for several distributions. For each of these distributions, using 

the above examples as a guide  

1. Use the size and range of bins in the histogram as a guide for extracting the observed frequency, 

f(xi), from your data. Record this. 

2. Calculate the theoretical frequency, F(xi), for each bin in step 1 using an appropriate theoretical 

distribution.  Record this. 

3. From the results of step 1 and 2, calculate the reduced chi squared parameter, 𝜒𝜐
2, and the 

probability that chance has caused 𝜒2to be as large as it is. Record these. 

4. Comment on the appropriateness of the assumed theoretical distributions.  

Again you should think of this as a programming exercise, consolidate the code from the example in 

script, use the R editor (file, new script) and then run it all. How can you make most of the lines of code 

stay the same from one distribution to the next? 

Report your results for analyzing each of the histograms from part a 

 

 blockB width 

 table width 

 emission data 

 radiation data (50, 500, 5000) 

 fair and unfair coin data. 
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 Include a copy of the full script you wrote to do the analysis.  

Task 2 
 Use the runif function in R to create a data set with 2,400 points randomly and uniformly distributed 

between 0 and 1:  

 flips<-runif(2400) 

Decide how to chop the interval from (0:1) into 6 equal pieces and identify one piece with each roll 

outcome 1, 2, 3, 4, 5, and 6. Using the same technique as before:  

1. Construct a table of the observed frequencies, f(xi). 

2. Calculate the theoretical frequency for each outcome, F(xi). 

3. Use the results from steps 1 and 2 to calculate the reduced chi squared parameter, χυ
2, and the 

probability that chance has caused χ2to be as large as it is.  

4. Comment on the fairness the random number generator in R, does it appears to have a bias 

towards any particular number.  

Include a copy of the full script you wrote to do the analysis.  

 

WHEN YOU FINISH: LEAVE THINGS AS YOU FOUND THEM! 
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Script for blockB calculation: 
require(fastR) 

blockB<-read.csv(“http://facultyweb.cortland.edu/douglas.armstead/S16/Intermediate/block.csv”) 

# To find the full range of the data consult summary 

summary(blockB$width) 

x<-seq(18, 22, by=0.5) 

f<-table(cut(blockB$width, breaks=x)) 

mw=mean(blockB$width) 

sw=sd(blockB$width) 

n<-length(blockB$width) 

px<-pnorm(x, mw, sw) 

F<- n*diff(px,1) 

data.chisq<-sum(((f-F)^2/F)) 

df=length(f)-2 

pRandomError<-1-pchisq(data.chisq,df) 

#Now for the key results 

mw 

sw 

data.chisq 

df 

pRandomError 

 


