Problem 2.20:

The equivalent resistance can be found from $R_{eq} = \frac{V_1}{i}$ where V₁ is the voltage from the power supply and i is the current through the power supply. We can find these from a LT spice simulation. The values are:

 $V_1\text{=}10V, ~i\text{=}6.61\text{mA}$ so that $R_{eq}\text{=}1.51k\Omega.$

The voltage at node A is 3.57V and the current through resistor R_5 is 0.89mA.

Note that 2.19 and 2.20 differ only in degree of neatness and resistor value, they are topologically identical.

		V(a)			I(V1)			I(R5)		1 4mA
0 57 4014										0.7.4
3.57499-										- U./mA
3.5742V-										– 0.0mA
3.5735V-										0.7mA
3.5728∀-										1.4mA
3.5721∀-										2.1mA
3.5714∀-										2.8mA
3.5707V-										3.5mA
3.5700V-										4.2mA
3.5693V-										4.9mA
3.5686∀-										5.6mA
3.5679¥-										6.3mA
3.5672V-										-7.0mA
0.)s 0.1s	0.2s	0.3s	0.4s	0.5s	0.6s	0.7s	0.8s	0.9s	1.0s

Problem 2.33

a) For the circuit with $V_s=5V_{DC}$ the steady state can be easily found by hand as the inductor is a resistance-free wire at that frequency and $i = \frac{v}{R} = \frac{5V}{200k\Omega} = 25\mu A$. Which can also be found using spice

b) For $V_s = 5V \cos(\pi t)$ the amplitude is 5V, the frequency $f = \frac{\omega}{2\pi} = 0.5Hz$, and the phase for a cosine from a sine is -90 degrees. This yields a V_s in red and the current I(t) in green:

They are nearly in phase and the amplitude of the current is $25\mu A$ with a minor phase shift. For these

component values the inductor and capacitor have essentially no effect on the current through the resistors.