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EXPERIMENT 8: LRC CIRCUITS 

Equipment List 
 S1 BK Precision 4011 or 4011A 5 MHz Function Generator 

 OS BK 2120B Dual Channel Oscilloscope 

 V1 BK 388B Multimeter 

 L1 Leeds & Northrup #1532 100 mH Inductor 

 R1 Leeds & Northrup #4754 Decade Resistor 

 C3 Cornell-Dubilier #CDA2 Decade Capacitor 

 C2 Cornell-Dubilier #CDB3 Decade Capacitor 

Introduction 
Consider the LRC circuit drawn to the right. According to Kirchoff s Law, at any time after the 

switch is closed we must find 

𝑉 = 𝑉𝑅 + 𝑉𝐶 + 𝑉𝐿

𝑉 = 𝑖𝑅𝑡 +
𝑄

𝐶
+ 𝐿

𝑑𝑖

𝑑𝑡

    (1) 

where the total resistance in the circuit is the sum of the 

external resistance and the internal resistance of the 

inductance; i.e. 𝑅𝑡 = 𝑅 + 𝑅𝐿. Taking account of the 

relation dq/dt = i, after the switch is closed, the derivative 

of this equation is 

𝑑𝑉

𝑑𝑡
= 𝑅𝑡

𝑑𝑖

𝑑𝑡
+

1

𝐶
𝑖 + 𝐿

𝑑2𝑖

𝑑𝑡2   (2)

A solution to this second order differential equation is known to be damped harmonic and, for the initial 

conditions q = i = 0, given by 

𝑖 =
𝑉

𝐿√𝛿
𝑒−

𝑅𝑡
2𝐿

𝑡 sin[(√𝛿)𝑡]      (3)

This equation contains an exponential damping term times a sine wave term where the frequency of 

the sine wave is 

𝜔 = √𝛿 𝛿 =
1

𝐿𝐶
−

𝑅𝑡
2

4𝐿2
      (4)

Figure 1: LRC Circuit 
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This solution has three regions of interest:  

1. underdamped (5 > 0) - the solution is damped 

oscillations 

 

 

2. overdamped (5 < 0) - the argument of the sine 

function is complex; thus, the sine function becomes 

a real exponential 

 

3. critically damped (5 =0) - the current returns to zero 

in the shortest possible time. 

It should be recognized that in any circuit which undergoes an 

abrupt change in voltage these effects will be present. Case one is 

the most frequent and is called ringing. 

In an alternating current LRC circuit the change in voltage with 

time in equation 2 is no longer zero, and whatever transient effects due to the turning on of the AC 

generator will quickly disappear. For a sine wave input, the solution to equation 2 is also a sine wave. For 

the series circuit, the current is the same through all components. As we observed last week, the voltage 

across the capacitor lags the current by 90°. Thus, VL and VC are 180° out of phase with one another in the 

series circuit. If we choose the phase of the current to be zero, the current can be written as 

𝑖𝑠 = 𝐼 sin(𝜔𝑡)       (5) 

Then the source voltage is 

𝑣𝑠 = 𝑉 sin(𝜔𝑡 + 𝜙)        (6) 

where the source voltage leads the current by the phase angle 

𝜙 = tan−1 (
𝜔𝐿−1

𝜔𝐶⁄

𝑅
)         (7)   

The phase angle can be illustrated by the vector 

representation in Figure 3. In this example the inductive 

reactance 𝑋𝐿 = 𝜔𝐿 is greater than the capacitive 

reactance 𝑋𝐶 = 1
𝜔𝐶⁄  , thus, the phase angle is 

positive and the source voltage leads the source 

current. For a constant amplitude source 

𝐼 =
𝑉

𝑍
           (8) 

Figure 2: Underdamped, Overdamped, and 
Critically Damped LRC Circuit Response 

Figure 3 Phase Relationships 
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where the impedance Z is given by 

𝑍 = √𝑅2 + (𝜔𝐿 − 1
𝜔𝐶⁄ )

2
     (9) 

The important difference between the LRC circuit and that of either the RC or RL circuits is that the 

current does not asymptotically increase or decrease but has a maximum. Note the behavior of the 

impedance 

𝑍 → {
∞ 𝑎𝑠 𝜔 → 0
∞ 𝑎𝑠 𝜔 → ∞

      (10) 

Note that the current goes to zero when the impedance becomes infinite. Thus, the current is zero 

for zero frequency, peaks for some finite frequency, and then drops to zero for large frequencies. The 

current reaches a maximum when the impedance is a minimum, or equivalently, for that frequency 

where the capacitive and inductive reactances are equal; i.e., from equation 9 

𝜔𝑜𝐿 −
1

𝜔𝑜𝐶
= 0   ⇒   𝜔𝑜 =

1

√𝐿𝐶
       (11) 

This type of circuit is a selective filter and is the basis for tuning in radios and TVs, etc. A measure of how 

sharp the resonance peak is, or the fineness of tuning, is called the Q factor of the circuit. The Q value 

is defined as the inverse of the fractional bandwidth.  

1

𝑄
=

∆𝜔

𝜔𝑜
=

∆𝑓

𝑓𝑜
       (12) 

In an LRC series circuit the Q value can be calculated for R not too large as 

𝑄 =
𝜔𝑜𝐿

𝑅
          (13) 
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Part I: RC rehash 
Re-build the low pass filter from lab 4 shown in Fig. 4 

 

Figure 4: Low-pass RC filter 

Sweep from low frequencies to high frequencies and observe how the output (Channel 2) depends 

on frequency. This is typical for a first order system. Estimate the cut-off frequency from what you 

see on the oscilloscope. 

PartII: Ringing 

 

Figure 5:Laboratory Setup for Ringing 

a. Measure the resistance of the inductor L1 with your multimeter. 

b. Construct the circuit shown above. This should produce an underdamped circuit. 

c. Using Eqs. 4, calculate  and the frequency of oscillation, f. 

d. Measure the actual frequency from Channel 2. 

e. Vary R and C around the given values. 

Question 1: What are the most obvious effects of changing R and C? Answer in terms of Eqs. 3 and 4. 

f. For L = 100 mH and R = 500, calculate the value of C that produces critical damping. 

g. Adjust C for critical damping on the oscilloscope (you really do need to calculate it first). 
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Question 2: Can you guess why there is a discrepancy between the actual C and the calculated C to 

produce critical damping? 

Part III: Resonance 

a. Set up the following circuit to determine the resonance frequency of the circuit 

experimentally. 

 

Figure 6 Series Resonance Circuit 

Note: The 100  resistor is a current transducer, turning current into voltage by Ohms Law. 

b. Look for a resonance around 900 Hz. Remember to maintain the source voltage constant. The 

resonance is reached when VR is a maximum. When you find resonance frequency, make many 

measurements around the resonance. 

c. Measure IR as a function of frequency about the resonance. 

d. Plot IR
2 versus frequency on the computer. This curve is proportional to power. 

e. Determine the resonance frequency f0 and the bandwidth f from your plot. 
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Part IV: The Transformer 
In a transformer made up of two coils of wire, one inside the other, the voltage developed across the 

loops is not resistive in the sense of an IR drop, but is given by Faraday's law as 

𝑉1 = −𝑁1
𝑑Φ𝐵1

𝑑𝑡
       (14) 

where Φ𝐵 is the magnetic flux through each loop of coil 1 (primary coil). Some of the flux from coil 1 

will pierce coil 2 causing an EMF to developed 

𝑉2 = −𝑁2
𝑑Φ𝐵2

𝑑𝑡
.       (15) 

Notice that the EMF's differ between the coils due to the different number of turns of wire. If an iron 

core is present then it is reasonable to assume that all of the magnetic field lines caused by coil 1 pierce 

the loops in coil 2. In this case 
Φ𝐵1

𝑑𝑡
=

Φ𝐵2

𝑑𝑡
 and  

𝑉1

𝑉2
=

𝑁1

𝑁2
         (16) 

Note that 
𝑁1

𝑁2
 is called the turns-ratio. 

a. Connect the oscilloscope to the secondary coil (inner coil) of the transformer. Make sure the 

iron rod is in place inside the secondary. Send 2𝑉𝑝𝑝 at 100Hz from the function generator into 

the primary coil (outer coil) of the transformer. 

b. Measure and record the peak-to-peak voltage of the secondary. 

c. Measured the peak-to-peak voltage of the primary and use this to determine the turns 

ratio from equation 16. 

d. Slowly remove the secondary coil from the primary leaving the rod in place. Note the rate at 

which the secondary voltage decreases. Replace the secondary coil. 

e. Slowly remove the iron rod out from the secondary coil. Note the rate at which the secondary 

voltage decreases. 

Question 3: Which had a more dramatic effect on the secondary voltage, pulling the secondary coil or 

pulling the iron? Why? 

Note that transformers with a variety of selectable turns-ratios (tap changer transformers) are used 

to keep the power distributed on the electrical grid steady as the local load changes. See for example 

https://en.wikipedia.org/wiki/Tap_changer . 

 

  

https://en.wikipedia.org/wiki/Tap_changer
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Name:__________________________  

Part I: 
Cut-off frequency 

Part II: 
RL =      = 

f() =      f(measured) = 

Question 1: 

C(theory) =    C(measured)= 

Question 2: 

Part III: (staple graph) 
L = 

RL = 

 

f(Hz) i i2 

200 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5000 

  

fo=   
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Part IV: 
Peak-to-Peak Secondary Voltage = 

Peak-to-Peak Primary Voltage =  

Turns Ratio = 

 


