
 

 

 

Laboratory 2: Goodness of Fit - The χ2 
test 

Introduction 

 Imagine that you have a quantity, x, that you wish to measure. Let us assume that you have taken 

Laboratory 1 to heart and have made N measurements of x and calculated the sample mean, sample 

standard deviation, and error of the sample mean for your data. Now you have decided to measure x 

because you wish to test some hypothesis. Perhaps you expect x to have a particular value or perhaps 

you expect x to have a particular standard deviation. The question at hand is this: Does your data 

support your hypothesis. 

 To answer this question you will need to assume a theoretical distribution which you believe applies 

(Gaussian, Poisson, or Binomial). You will make this assumption based on your knowledge of the 

experiment and how that will effect the dispersion of values about the mean.  You can then use this 

theoretical probability distribution, P(xj), to predict the theoretical frequency, 

 

𝐹(𝑥𝑗) = 𝑁𝑃(𝑥𝑗)      (1) 

 

for any value xj. 

 It is important to recognize that we can only made a finite number of measurements. Therefore we 

would not expect the theoretical frequency, F(xj), to equal the measured frequency, f(xj), in any given 

interval; i.e., we would not expect F(xj) = f(xj).  However, if we have chosen the correct distribution 

function to represent the data, we would expect the deviation between the experimental frequency and 

assumed theoretical frequency to be statistical in nature. That is to say, we expect 𝑓(𝑥𝑗) − 𝐹(𝑥𝑗) to be 

given by some statistical error 𝜎(𝑓(𝑥𝑗)) associated with measuring f(xj); i.e. 
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The key question is: what are the expected values for 𝜎(𝑓(𝑥𝑗))? To understand this, consider what 

happens if we were to replicate the experiment.  Certainly the distribution of N measurements would be 



 

 

slightly different because of the random nature of errors.  If we made a large number of replicates, m, of 

the experiment we would find a discrete distribution of possible frequencies for each value xj. 

Example 1: 
As an example, consider the large data set from experiment 1 involving a block stored in the file 

http://facultyweb.cortland.edu/douglas.armstead/S15/Intermediate/block.csv (which you imported into 

the data_frame thisBlock) the histogram of the width data appears in Fig. 1 and the frequency table in T 

able 1. The histogram was produced using the histogram() with type=’count’. (In truth I used hist() as 

histogram() doesn’t give such a nice bin width in this example). 

 

Figure 1: Histogram of block widths from the data_frame thisBlock. 

Constructing the frequency table is slightly more involved. First we must set the edges of our bins, let us 

call this x and we will use the sequence command, seq() and then cut up our data among the bins: 

 x<-seq(18, 22, by=0.5) 

 f<-table(cut(currentData, breaks=x)) 

http://facultyweb.cortland.edu/douglas.armstead/S15/Intermediate/block.csv


 

 

 

where f is the frequencies in each bin, what we previously called 𝑓(𝑥𝑗). 

Interval Frequency 

(18, 18.5] 4 

(18.5, 19] 53 

(19, 19.5] 232 

(19.5, 20] 380 

(20, 20.5] 252 

(20.5, 21] 69 

(21, 21.5] 9 

(21.5, 22] 1 

Table 1, frequencies from the data set thisBlock$width. 

Because of the measurement process, we expected a Gaussian distribution for the width of the block. 

The mean and standard deviation of that Gaussian/normal distribution can be extracted from our data 

to construct the theoretical observation rate, 𝐹(𝑥𝑗). To do this we need the new function diff(x,lag) 

which takes the vector x and subtracts it from itself  shifting the index by lag, i.e., x[n+lag]-x[n]. 

 mw=mean(thisBlock$width) 

 sw=sd(thisBlock$width) 

 n<-length(thisBlock$width) 

 px<-pnorm(x, mw, sw) 

 F<- n*diff(px,1) 

Note that px is the integrated probability that one observed value for x is less then xj so px is the 

probability that one observed value is in the bin labeled by xj.  

Now some background to motivate our next step. Consider a specific bin, the one labeled xj = 19 cm 

(and centered on 19.25cm). The frequency from table 1 measured for the interval xj = 19 cm was 

f(19cm) = 232. If you were to make 12 more replicates of the experiment (each with 100 measurements) 

there would be a total of m = 13 replicates.  Figure 2 is a histogram of just such a situation with the 

different values that f(19cm) took in the m sets of replicates. Note that the total number of outcomes 

fk(19cm) must equal the total number of replicates, i.e. Σfk(19cm)  =  m. The mean frequency is 

<k>=233.6.  It is reasonable to expect that the mean over all the replicates, 𝐹(19𝑐𝑚) ≅ 233.6, is closer 



 

 

to the parent distribution’s mean value than any one replicate, say the first with f(19cm)=232. 

 

Figure 2: Frequency distribution for 13 replicates for bin 19cm. The mean, <k>=233.6. 

   Instead of actually making those additional replicates of our experiment to gain more information 

about bin 19cm we will use our observations in each of the histogram bins for the data we have, 𝑓(𝑥𝑗). 

Our measurements of f(xj) are discrete i.e.,  they take integer values. Thus we expect this distribution in 

Fig. 2 to be a Poisson distribution.  For a Poisson distribution, our best estimate of the mean of this 

distribution is the theoretical frequency, which we have called 𝐹(𝑥𝑗), and the standard deviation is then 

√𝐹(𝑥𝑗). Thus we expect, on average, 

[𝑓(𝑥𝑗) − 𝐹(𝑥𝑗)]
2

≅ 𝜎2 (𝑓(𝑥𝑗)) = 𝐹(𝑥𝑗)    (3) 

or 
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 We can use all of the information we have collected in a given replicate by calculating the value of 

the left-hand side of Eq. (4) in each of the n intervals xj. Summing all of these gives the χ2 value for the 



 

 

 

one replicate we actually took data for 
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If our assumption about the theoretical distribution is correct we would expect 𝜒2 ≅ 𝑛 for our dataset, 

(recall that n is the number of intervals and N is the number of measurements in a replicate).  More 

precisely we expect 𝜒2 ≅ 𝜈, where is the number of degrees of freedom for the histogram.   

o For a Gaussian distribution 𝜈 = 𝑛 − 2. The only way we can estimate the mean and standard 

deviation of the parent distribution is to assume they have the same value as the sample mean 

and the sample standard deviation. Both of these assumptions consume degrees of freedom.  

o For a Poisson distribution 𝜈 = 𝑛 − 1 since the data is used to determine the sample mean and 

the standard deviation immediately follows from that.   

o For a binomial distribution  𝜈 = 𝑛 as the data is not needed to determine the distribution. 

We can calculate 𝜒2in R as well as 𝜈, but it is useful to take it one step further and calculate the 

probability that random fluctuations are responsible for the differences we found between the observed 

𝑓(𝑥𝑗) and and theoretical 𝐹(𝑥𝑗) values. 

 data.chisq<-sum(((f-F)^2/F)) 

 df=length(f)-2 

 1-pchisq(data.chisq,df) 

The probability that random fluctuations are responsible for the difference between the observed 

frequencies and Gaussian frequencies is 0.863 or 86.3%. 

 The reduced 𝜒𝜐
2
 is defined as  

𝜒𝜐
2 =

𝜒2

𝜐
     (6) 

We expect 𝜒2 ≅ 𝜈 for a good fit or 𝜒𝜐
2 ≅ 1. If 𝜒𝜐

2 ≫ 1 then the deviations are larger than statistically 

predicted and we might question the validity of the choice of distribution. This corresponds to 1-

pchisq()<<1. If 𝜒𝜐
2 ≪ 1 then the deviations are smaller than statistically predicted and we might wonder 

if the deviations are indeed statistical, this is something that 1-pchisq() doesn’t do a good job of 

conveying. For the data set thisBlock$width  𝜒𝜐
2 = 0.42 which falls in the category 𝜒𝜐

2 ≅ 1. 

Example 2: A Fair Coin?    
Imagine trying to determine if a coin is fair or not. If the coin is fair, then the probability of getting heads 

is p=0.5 and the probability of getting tails is q=0.5, if it is not fair p≠0.5 and q≠0.5. Since a coin has only 



 

 

two sides, q=1-p, this will have important consequences for testing our coin. If we toss the coin 100 

times, we will expect to get heads 100 × 0.5=50 times. We know, however, that while the probability of 

getting heads is 0.5, there is a significant chance that we would actually get a few more or a few less 

than 50 heads in 100 tosses. The question is, how much variation in the number of heads will we need 

to see before we are confident that someone is trying to cheat us? How much variation from the 

average do we need to reject the hypothesis that p=0.5? This is where the  Goodness of Fit test comes 

in handy. Imagine you now perform the experiment to test the hypothesis that the coin is fair, you toss 

the coin 100 times and observe that it landed on heads 38 times. From this data, the design of our 

experiment, and the nature of coins, we are able to determine that the coin must have landed on tails 

62 times and we note this in the Table 2.  

  Observed Expected 

Heads 38 50 

Tails 62 50 

Table 2: Observed and expected results of 100 coin tosses. 

With this data in our hands, we can compute a  test statistic and use it to determine the fairness of the 

coin. That is: 

 𝜒2 =
(38−50)2

50
+

(62−50)2

50
= 5.76      (7) 

In order to examine our value in the context of a distribution we calculate the total degrees of 

freedom, , by looking at the total number of parameters in our model, 2 (p and q), and subtracting 1 

because q is not independent from p since q=1- p:  

=total number of parameters-1     (8) 

𝜒𝜐
2 =

𝜒2

𝜐
     (9) 

In our case, and as a result 𝜒1
2 = 𝜒2 = 5.76. We found 𝜒𝜐

2 ≫ 1 and so the theoretical 

distribution cannot apply to our data. We must reject the hypothesis that the coin is fair. 

Procedure 
 In Laboratory 1 you constructed histograms for several distributions. For each of these distributions, 

using the above examples as a guide  



 

 

 

1. Use the size and range of bins in the histogram as a guide for extracting the observed frequency, 

f(xi), from your data. Record this. 

2. Calculate the theoretical frequency, F(xi), for each bin in step 1 using an appropriate theoretical 

distribution.  Record this. 

3. From the results of step 1 and 2, calculate the reduced chi squared parameter, 𝜒𝜐
2, and the 

probability that chance has caused 𝜒2to be as large as it is. Record these. 

4. Comment on the appropriateness of the assumed theoretical distributions.  

I encourage you to think of this as a programming exercise, consolidate the code from the example in a 

text editor, edit it there, and then copy and paste it into R. How can you make most of the lines of code 

stay the same from one distribution to the next? 

Third example: A Random Number?    
Imagine trying to determine if a random number generator is truly random or whether it has a bias that 

makes some numbers come up more often than others. If the random number generator is unbiased, 

then the probability of getting any particular number should be 1/N where N is the total range of 

numbers the generator might produce. In this example we will be working with a random number 

generator that produces integers between 1 and 6 to simulate the dice that you used in the Lab 1. If the 

generator is unbiased each number should appear with a probability of 1/6 = 0.167.  As with the fair 

coin, however, we know there is a significant chance that we could get a few more or a few less than the 

average for any finite number of trials. This is where the  Goodness of Fit test comes into the 

experiment and will again help us answer the question of whether the variations we observe are 

consistent with the hypothesis that the probability is 0.167 for all six possible outcomes.   

Procedure 
 Use the runif function in R to create a data set with 2,400 points randomly and uniformly distributed 

between 0 and 1:  

 flips<-runif(2400) 

Decide how to chop the interval from (0:1) into 6 equal pieces and identify one piece with each roll 

outcome 1, 2, 3, 4, 5, and 6. Using the same technique as before:  

1. Construct a table of the observed frequencies, f(xi). 

2. Calculate the theoretical frequency for each outcome, F(xi).  



 

 

3. Use the results from steps 1 and 2 to reduced chi squared parameter, 𝜒𝜐
2, and the probability 

that chance has caused 𝜒2to be as large as it is. Comment on the fairness the random number 

generator in R, does it appears to have a bias towards any particular number. 

WHEN YOU FINISH: LEAVE THINGS AS YOU FOUND THEM! 


