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Laboratory 1: Data Distributions 

Introduction 
 In our everyday lives we are used to hearing simple questions, making measurements to answer 

these questions, and reporting our results, i.e. “What time is it?”, “How far is it?”, “How much does it 

weigh?” etc.  Unfortunately, this familiarity has made us somewhat cavalier in making scientific 

measurements in that we frequently ignore the uncertainties involved in the measurements; that is, 

how precise is the result we report?  Consider the single measurement of the length of a rigid rod.  If we 

use an ordinary meter stick, we might measure 10.12 cm where the last digit is an eyeball guess 

between 10.1 and 10.2 cm.  How precise is the measurement?  Presumably our eye can interpolate at 

least one-half a gradation mark or one-half a millimeter; therefore, we might report 10.12 ± .05 cm.  This 

is the best we can do.  Now, what if we had taken several measurements?  How is the situation treated?  

Have we improved our precision?  Can we learn more about the quantity measured and the error 

associated with it from the distribution of measured values?  The answer is frequently yes.  In this 

laboratory, we will examine the uncertainties associated with making several measurements of a single 

quantity, how to interpret the results, and how to report the findings. 

The Parent Distribution 
 For the purposes of today’s laboratory we will ignore the problem of systematic error; i.e., errors 

due to faulty equipment, inaccurate calibration, or human bias, for these errors may only be corrected if 

their existence is known.  If this is the case, then presumably they have been eliminated or compensated 

for.  If systematic errors are present, then our measurements may be precise (determined by the 

smallest scale of the measuring device), but not accurate (determined by how well calibrated the 

measuring device is). 

 Our interest is in random error, either instrumental or statistical.  If we make N measurements of a 

physical quantity, lets call it x, then we will expect some variability in the values we find. This list of 

measured values, xi (i=1…N), while random, are related to each other (note: some of the xi may be the 

same). In the case of instrumental error these are also related to X, the real and true value of our 

physical quantity if only our instruments and methods would work perfectly. The more measurements 

we take (bigger N) the better we will be able to infer how X is related to our actual measurements. 



 

 

 The question we wish to address is this: What is the best numerical way to express X from our N 

measurements and to assign an error which reflects the precision of the measurements?  The best 

dataset we could imagine working with has N = ∞. In this imaginary dataset, called the parent 

population, we expect every measured value xi to have many duplicates. Notice that the more 

duplicates that a given xi has the more likely it is. So we can start to make sense of this dataset by 

sorting the values we found into bins. Each bin (we will use n<N of them) holds similarly sized 

measurements and we will choose our labels for the bins so as to represent the measurement values 

inside them, xj (j = 1…n). Once sensible way to do this is to find the full range of values in the parent 

distribution and chop the range up into n equal pieces x wide. While we have specified that n < N we 

reserve the right to take 𝑛 → ∞ so that we can use calculus. We can visualize this by plotting a 

histogram of the bins, i.e., the frequency distribution of the xj (which is fair as we have already sent 

𝑁 → ∞ ). This binned tally is called the parent distribution. We can formalize this by defining the 

frequency, f(xj), as the frequency of occurrence for a value in the interval around xj. This implies that the 

sum of the frequencies over all values xj must equal the total number of measurements, or 

∑ 𝑓(𝑥𝑗) = 𝑁𝑁
𝑗=1      (1) 

The probability of a single measurement value belonging in bin xj is 

𝑃(𝑥𝑗) = lim𝑁→∞
𝑓(𝑥𝑗)

𝑁
             (2) 

Equation 2 just normalizes the probability 

distribution to have an area of one. 

1)(
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N

j

jxP                     (3) 

A fictitious distribution is shown in Figure 1.  Note 

that Eq. 3 implies that the area under this curve 

must equal one. 

 Three quantities are commonly used to describe the center of a distribution. 

1. The mean, or average, of xi which can be calculated by  

Figure 1 Sample Distribution 
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2. The median, 𝜇1/2, is the value which splits the parent population in half, that is half of xi are less 

than 𝜇1/2 and the other half are greater.  This is equivalent to 
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3. The mode, 𝜇𝑚𝑎𝑥, is the value having the greatest probability of occurring; i.e., 

)()( max jxPP   (6) 

 Any or all of these parameters 

might be of use to the 

experimentalist, although the mean 

is generally the most quoted value.  

This is because in many situations 

the physical quantity we are looking 

to estimate is not skewed by a small 

number of extreme events. 

Conviniently, many distributions we 

will encounter are symmetric 

around a central peak, then 

𝜇 = 𝜇1/2 = 𝜇𝑚𝑎𝑥.  An example of 

such a distribution appears in Fig. 2. 

 In addition to estimating the center 

of the distribution it is convenient to be 

able to describe the spread in the data. One possible choice is the deviations from the mean, 𝛿𝑖 = 𝑥𝑖 −

𝜇. While this can be calculated for each data point its average,< 𝛿 >,tells us nothing since 

< 𝛿 ≥ lim𝑁→∞ [
1

𝑁
∑ (𝑥𝑖

𝑁
𝑖=1 − 𝜇)] = lim𝑁→∞ [

1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 ] − 𝜇 = 𝜇 − 𝜇 = 0  (7) 

One common, and simple, way to fix this is by calculating the average squared deviation which is called 

the variance 

Figure 2 An approximation to a symmetric parent distribution. 



 

 

𝜎2 =< 𝛿2 >= lim𝑁→∞ [
1

𝑁
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1 ] = ∑ 𝑃(𝑥𝑗)(𝑥𝑗 − 𝜇)2𝑁
𝑗=1       (8) 

The standard deviation, which is a measure of the spread is then 𝜎 = √𝜎2 .  Note that the standard 

deviation is the root mean square of the squared deviations. 

 We can now address the question we posed ourselves: given the parent population of x, and thus 

the parent distribution, what is X, the "true value" of x?  By convention we call the mean   the true 

value of x and the standard deviation   is a measure of the uncertainty involved in attempting to 

measure the mean in any single measurement. 

The Sample Distribution 
In the previous section we considered a theoretical distribution of a true value X found from an infinite 

set of measurements of x.  Clearly cannot collect that much data, nor would we want to. Instead we will 

have to sample the parent distribution by making a finite number of measurements.  Using this smaller 

set of data, what then are our best estimates of the parent mean and standard deviation? 

 Our best estimate of the parent mean is the sample mean, 𝑥, 
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This is a good choice of definition for 𝑥 as  

 the deviations 𝛿𝑖 = 𝑥𝑖 − 𝑥  sum to zero and 

 the sum of 𝛿𝑖
2 is minimized with respect to the choice of 𝑥.   

Our best estimate of the sample standard deviation is given as 
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The primary difference between (10) and (8) is the replacement of the factor N with N - 1.  This change is 

justified in two ways. 

1. The number of degrees of freedom, is N, the number of measurements xi.  We use up one 

degree of freedom determining 𝑥 so  → 𝑁 − 1 when we determine the sample standard 
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deviation.  This makes s slightly larger than if we truly knew X to be . 

2. If N = 1, we have no means of knowing the possible dispersion of the xi values; thus, (10) is 

meaningless in this case. 

The Error of the Mean 
 We have now given estimates for the sample mean and sample standard deviation which best 

describe the parent distribution of X.  We will now determine, using our N measurements, the precision 

with which we know the sample mean.  Consider the following argument.  Given a function g of several 

independent variables, g(a,b,c), then the total differential of g is:  

 𝑑𝑔 =
𝜕𝑔

𝜕𝑎
𝑑𝑎 +

𝜕𝑔

𝜕𝑏
𝑑𝑏 +

𝜕𝑔

𝜕𝑐
𝑑𝑐    (11) 

Let us identify the differentials with the deviations from the mean values of g, a, b, and c; i.e., in the ith 

measurement we would find 

(𝑔𝑖 − �̅�) ≅ (𝑎𝑖 − �̅�)
𝜕𝑔

𝜕𝑎
+ (𝑏𝑖 − �̅�)

𝜕𝑔

𝜕𝑏
+ (𝑐𝑖 − 𝑐̅)

𝜕𝑔

𝜕𝑐
    (12) 

According to equation (9), the variance of g for an infinite number of  gi s is 

𝜎𝑔
2 = lim𝑁→∞

1

𝑁
∑ (𝑔𝑖 − �̅�)2𝑁

𝑛=1      (13) 

In truth the gis are determined by the ai, bi, and cis so it is appropriate to substitute (12) into (13). If the 

variations in a, b, c are independent, then for an infinity of measurements the cross terms in the 

squaring of the bracket cancel out, and 𝜎𝑔
2 = lim𝑁→∞

1

𝑁
∑ (𝑔𝑖 − �̅�)2𝑁

𝑛=1  
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Now, applying this same reasoning to the sample mean x , where the variables are the measured values 

xi, the variance of the sample mean is 
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where si
2 is the variance associated with measurement of xi.  If all data points are taken under the same 



 

 

experimental conditions, then si
2 = s2, the sample variance.  Furthermore, from equation (9) we get :     
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thus: 

 𝑠�̅�
2 =

𝑠2

𝑁
      (17) 

The error in the sample mean is then: 

𝑠�̅� =
𝑠

√𝑁
     (18) 

This is a key distinction, while the standard deviation of the sample distribution is determined by the 

sources of error in the measurement, we can reduce the error in the mean to any level we choose by 

increasing the number of measurements we take.  There are, however, diminishing returns for this trick.  

You must take four times as much data to cut the error in the mean in half. 

 

For example let x = 10.02 cm and s x = .13 cm.  If the 1 in s x  is uncertain, then we know nothing about 

the 3.  Thus the number should be reported as 10.0 ± 0.1 cm. 

Distributions 
 While there are many probability distributions, in the measurements we will make only a few 

appear consistently. We will study the Gaussian, Poisson, and binomial distributions. 

Gaussian or Normal Error Distribution 
 The Gaussian distribution is the most important probability distribution in the analysis of physical 

data where the discrepancies from the "true" value are due to random experimental errors.  The 

To report the mean of a set of measurements one specifies:      xsx   

The first significant digit of the error in the mean is the only significant digit. 
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characteristics of this distribution are 

1) It is a continuous distribution; i.e., one in which an infinity of different measured values are possible. 

2) It is symmetric about a central peak; thus the mean, mode, and median are the same. 

3) It is solely determined by a mean (determined by the distribution) and standard deviation   

(determined by the experimental precision). 

 The normalized Gaussian probability density function (probability per interval) is defined as 



G(xi,,) 
1

 2
e

(xi  )
2

2 2

     (19) 

This relationship may converted to a dimensionless probability density by multiplying the density by the 

width of the distribution and making it a function of the dimensionless parameter:        
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which represents some fraction of a standard deviation.  Then  



G (zi) 
1

2
e

zi
2

2      (21) 

 

Figure 3 illustrates the Gaussian probability 

density function PG(z) as a function of z from the 

mean.  A third parameter, dependent on the 

distribution and sometimes quoted, is the full 

width at half maximum (FWHM) ≅ 2.35𝜎.  It is 

important to recognize that the dimensionless 

representation of Fig. 3 and Equation 21 are valid 

for any Gaussian distribution. 





 

 

 This is a continuous distribution defined at every point.  But the reason we are interested in this 

distribution is to determine how likely any one 

measurement is. We will infer this from the 

probability distribution function (pdf) but must 

recognize that the pdf is not directly the probability. To see why, recall that all real experimental devices 

have a precision x determined by the smallest scale division of the device. We don’t actually know 

where in the interval ∆𝑥 our measurement belongs. So the probability is actually the integral of the 

density function over the interval from (𝑥𝑖 −
∆𝑥

2
) to (𝑥𝑖 +

∆𝑥

2
); as Δx is the limit of our experimental 

precision. Geometrically, the probability associated with the measurement of xi is the area under the 

probability density curve in the interval ∆𝑥, as represented in Fig. 4. 

 There are two ways we might evaluate this, by hand or using R. First by let us consider doing this by 

hand. There are two likely senarios. 

1. Variability in the quantity to be measured drives the uncertainty. Here, the precision of our 

measuring device, ∆𝑥, is much better than the standard deviation in our measurements, 𝜎. This 

means that ∆𝑥 ≪ 𝜎 and the probability density function will be slowly varying over the interval 

∆𝑥. We can then treat PG(z(xi)) as being locally constant and the integrated probability over the 

interval centered at xi is the central value 𝑃𝐺(𝑧(𝑥𝑖))∆𝑧 where ∆𝑧 =
∆𝑥

𝜎
≪ 1. This quantity is the 

probability of measuring xi in a single measurement if your experimental accuracy is Δx. 

2. Rapid variation of the probability density, 

∆𝑥 ≥ 𝜎, i.e. the precision is on the order or 

greater than the standard deviation.  Here 

the variation is not linear; and the former 

procedure is fails.  We must instead 

integrate the function over the interval ∆𝑥 

or the interval between the end points 

(𝑥𝑖 − ∆𝑥/2)  to (𝑥𝑖 + ∆𝑥/2) . Error functions 

ensue and it is really much simpler not to go this route. 

With R we would use pnorm command: 

 pnorm(q,mean,sd)  

Figure 4: Portion of the Gaussian Distribution 

Figure 3 A Gaussian distribution is superimposed on a 1e6 
sample distribution histogram. 
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which gives the probability that the real value, X, is less than the measured value, q, with a normal 

(Gaussian) distribution centered on mean with standard deviation sd. The probability that X is in the 

interval is then the difference in value of pnorm evaluated at both endpoints of the interval. 

Experiment with The Gaussian Distribution 

Part One: 

Small Dataset 

The data in Table 1 represents N=5 measurements of the width of a 
block. The same ruler was used for all measurements and 
so we expect that both ∆𝑥, the uncertainty in the ruler, and 𝜎𝑖, the 
uncertainty in the measurement, are constant.  

By hand calculate: 

1. The sample mean. 
2. The sample standard deviation. 
3. The error in the sample mean. 

Using R repeat this calculation. 

Start R and load the fastR package: 

 require(fastR) 

You now need to bring the data into R, for this small amount of data you can type it in as a vector. R 
uses arrows for assignment, creating a lone variable called width and assigning it the value 3 can be 
done this way: 

 width<-3 

or this way: 

 3->width 

R builds up vectors through concatenation. A 3D position vector can be defined and filled with a vector 
(1.1, 1.2, 1.4) using: 

 r<-c(1.1,1.2,1.4) 

Use this to build a vector called blockWidth holding the block widths in Table 1. 

Table 1 

Width (mm) 

20.45 

19.91 

19.41 

19.55 

19.86 



 

 

 blockWidth <-c(…) 

R will count the number of data points you have, the command length(v) returns the length of vector v. 

 length(blockWidth) 

R also calculates means and standard deviations of vectors, these commands are mean(v) and sd(v). Use 
these commands to calculate sample mean, standard deviation. 

 mean(blockWidth) 

 sd(blockWidth) 

R does a good job of giving you an overview of your data showing the min, max, mean, median, as well 
as the 1st and 3rd Quartiles. The command for this is summary(v). 

 summary(blockWidth) 

R also does a good job of showing you your data graphically. Here a histogram is useful histogram(v). 

 histogram(blockWidth) 

You may be interested to see the histogram and to show a probability density function that is fit to it, for 

this you will need to complicate the syntax slightly: 

 histogram(blockWidth, density=TRUE) 

While R doesn’t have a built in function to calculate the sample mean error you can build it up from the 

commands above, if you use the squareroot, sqrt(), function. Do this in a way that doesn’t require you to 

keep track of the number of data points. 

Large Dataset 

R is even more useful with larger datasets. Let us now use a more extensive dataset on this same block. 

This is available in the comma separated value (.csv) file on the course website, block.csv. While you 

could type this all in, it is much easier to read it into R. There are built in functions for reading in csv 

datasets, the command is read.csv(“fullFileName”). The file could be on your computer (e.g. 

“C:/user/…”) or it can be pulled directly from the web (e.g., “http://facultyweb.cortland.edu/...”). Bring  

in data from the file http://facultyweb.cortland.edu/douglas.armstead/S15/Intermediate/block.csv and 

assign it to the name thisBlock 

 thisBlock<-

http://facultyweb.cortland.edu/douglas.armstead/S15/Intermediate/block.csv
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read.csv(“http://facultyweb.cortland.edu/douglas.armstead/S15/Intermediate/block.csv”) 

When you bring the data in from the file it is more complicated than before. This is because there are 

multiple variable, i.e., width , length, and depth, each with many data points. The thing you brought in 

and assigned the name thisBlock is called a data_frame. You can look at the data you brought in a 

couple of ways. A good place to start is by looking at the top of your data using the command 

head(data_frame). This will tell you the names of all the variables in the data_frame and there first few 

values. 

 head(thisBlock) 

You can also display all of the data in your data_frame. Do this by typing your data_frame’s name and 

hitting enter.  

 thisBlock 

Finally you can use the data editor. This is under the Edit tab. You will need to remember the name of 

your data_frame to do this. This not only gives you a handy way to look at your data, but also a 

convenient place to edit it if need be. 

 Some of the commands we used on the small dataset will work directly on a data_frame, e.g., 

summary(), others require individual vectors. You can access a vector inside a data_frame if you 

separate their names with a dollar sign. For example: 

 thatBlock$depth 

gives you access to the vector depth in the data_frame called thatBlock. 

For your large dataset (pulled from the file) use R to 

1. Calculate the sample mean of the block width. 

2. Calculate the sample standard deviation of the block width. 

3. Calculate the error in the sample mean of the block width. 

4. Draw a frequency histogram of the block width data, include the probability density function. 

a. With a pencil and a ruler label the mean, standard deviation, and FWHM on the 



 

 

histogram. 

5. Find the probability that you would measure a width between 20mm and 20.3mm when you 

take the next measurement.  

Part Two: 
Use a meter stick to measure the width of four of the lab tables in the room.  For each table repeat the 

measurement at least five times each for a minimum of 20 measurements.  For each measurement, 

make a realistic estimate for your measurement error in using the meter stick do to such things the 

precision with which the stick can be read and your ability to make it line up square with the table.  

From your data:  

1. Calculate the sample mean. 

2. Calculate the sample standard deviation. 

3. Calculate the error in the sample mean. 

4. Compare your estimate for the statistical uncertainty (i.e. the standard error in the mean) with 

your estimate for the measurement uncertainty inherent in your data.  Discuss the significance 

of this finding. 

The Poisson Distribution 

 The Poisson probability distribution is generally appropriate in counting experiments where the 
number of observed events is small compared to the number of objects that could cause the event.  An 
example is radioactive decay, where the number of disintegrations in a given time interval is small 
compared to the number of radioactive atoms present.  The dispersion of events measured in this case 
is not due to random error, but to the statistical nature of the physical problem.  The characteristics of 
this distribution are: 

1.  It is a discrete distribution.  You measure integer values. 

2.  The distribution is asymmetric, that is the mean has a different value than the mode. 

3.  The distribution (including standard deviation) is determined solely by the mean. 

 The Poisson probability distribution, normalized to one, is 
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In this case, when the probability distribution is only a function of interval xi, the variance can be found 
from equations (8) and (22) with a little manipulation as 
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    (23) 

Thus the standard deviation is the square root of the mean. 

Figure 6 shows probability distributions for means of 1.67 and 10, respectively.  

 

 

 

 

 

 

 

 

 

Figure 6: Sample approximations to Poisson distributions with means μ=1.67 and μ=10. Each sample 

has 1e6 measurements. 

You should note three points: 

1) While the possible measured values are integers; i.e., 0,1, 2, etc., the mean need not be integer. 

2) For 𝜇 ≪ 10 the probability for no events occurring is non-negligible. 

3) For 𝜇 ≫ 10 the Poisson distribution becomes more symmetrical.  I fact, for large  the distribution 

becomes Gaussian with the added feature that 𝜎 = √𝜇. 

  



 

 

 Experiment with The Poisson Distribution 

Part One:  
 

 The data in Table 2 represent N = 50 measurements of emission rates from a radioactive source during 

1 second intervals. 

 

 

 

Table 2: Poisson Distribution Data for Radioactive Decay 

1. Bring this into a data_frame in R. This is the first time you will construct one on your own. 

a. Create a variable called counts and fill it with the proper values, try using the short hand 

0:11 to speed this along. 

b. Create a variable called freq and fill it with the proper values. 

c. Create a  data_frame called emission and fill it with your variables. 

  emission<-data.frame(counts,freq) 

2. Calculate the sample mean, this will be more complicated than just using mean() and will 

instead require the use of sum(). 

3. Calculate the sample standard deviation. 

4. Calculate the error in the sample mean. 

5. Using R draw a frequency histogram of the data and label significant features, since you don’t 

have the raw data you will need to make use the function xyplot(), it has the syntax 

xyplot(y~x,data=data_frame):  

 xyplot(freq~X, data=emission). 

6. Calculate the theoretical standard deviation from equation (23) and compare to what you 

obtained in step 2.  Does this tell you anything? 

  

Counts (1/s) frequency Counts (1/s) frequency 

0 0 6 5 

1 3 7 6 

2 5 8 5 

3 7 9 3 

4 7 10 1 

5 8 11 0 
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Part Two:  

Using the same R syntax as before, import the data set from the course website: 

 http://facultyweb.cortland.edu/douglas.armstead/S15/Intermediate/RadiationCountData.csv  

This data represents N = 5,000 measurements of radiation counts from a uranyl nitrate source taken 

over one second intervals.  We can use this large-N data set of radioactive decay data to explore how 

the value of N effects your results. Use R to perform the following calculations for subsets of the data 

that include 50, 500, and 5,000 data points from the original dataset. To do this you will need to sample 

the dataset using the command sample, the syntax is sample(originalData, # of samples). Assign your 

sampled data to new data_frames for example  

 r50<-sample(originalData$variable, 50) 

1. Calculate the sample mean. 

2. Calculate the sample standard deviation. 

3. Draw a frequency histogram of the data and show on the same graph the theoretically expected 

Poisson distribution using the mean and standard deviation calculated from the complete 5,000 

point data set in each case. While it is complicated to over lay a plot data in R with a Poisson 

distribution from scratch, I am providing functions that do this, histPois(x,lambda) and 

histPois0(x,lambda) which plot different ranges. The data is x and the Poisson’s mean value is 

lambda. Note that dpois(x,lambda) is the built in probability density  function. The functions are 

in the file: http://facultyweb.cortland.edu/douglas.armstead/S15/Intermediate/showRad.R 

bring them into R using the source() function: 

 source(“http://facultyweb.cortland.edu/douglas.armstead/S15/Intermediate/showRad.R”) 

4. Calculate the theoretical standard deviation from the mean found in step 1 and compare to with 

the standard deviation you obtained in step 2.   

From your results in steps 3 and 4 for each of the three data ranges considered above (i.e. N=50, 500, or 

5,000), discuss the significance of the number of data points collected to your application of the 

theoretical Poisson distribution? 

http://facultyweb.cortland.edu/douglas.armstead/S15/Intermediate/showRad.R
http://facultyweb.cortland.edu/douglas.armstead/S15/Intermediate/showRad.R


 

 

The Binomial Distribution 
 The binomial probability distribution relates the probability of certain combinations of events 

occurring where each event can have only one of two possible outcomes.  To develop this distribution, 

consider the flip of a single coin.  While we cannot predict the result of a single toss, after a large 

number of tosses we would expect to find 50% of the tosses heads and 50% tails.  Suppose now there 

were two coins.  There are four possible distinguishable events occurring over a large number of tosses.  

Distinguishable means I know which coin is which. 

Coin 1 P1 Coin 2 P2 P=P1*P2 

Distinguishable 

P 

Indistinguishable 

Head 50% Head 50% 25% 25% 

Head 50% Tail 50% 25% 50% 

Tail 50% Head 50% 25% 

Tail 50% Tail 50% 25% 25% 

Table 3: Two Coins With Equal Probability 

Notice that if we cannot distinguish between the coins, the combinational probability for a head-tail pair 

is 50%. 

 Now consider the general case of n tossed coins.  The probability of any distinguishable toss is 

just (½)n since there are 2n possible ways the coins can land in an ordered fashion.  Let us now ask how 

many of these ordered tosses lead to x heads.  The first head could be any one of the n coins.  The 

second head must be one of the other (n - 1) coins, and so on until the xth head must come from one of 

the (n - x + 1)th coins left.  Thus the number of possible permutations of x heads from n coins is 

)!(

!
)1)...(1(),(

xn

n
xnnnxnP


     (24) 

 

 Note that we have kept track of which coin is which.  What if we don't care?  That is, of the x 

heads, who cares which one we choose first or last?  If not, then there are x! different ways the x heads 

could have been picked up.  Thus, the actual number of indistinguishable combinations of x heads is the 

number of distinguishable permutations divided by the degeneracy x!, 
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𝐶(𝑛, 𝑥) =
𝑃(𝑛,𝑥)

𝑥!
=

𝑛!

𝑥!(𝑛−𝑥)!
≡ (

𝑛
𝑥

)     (25) 

The symbol (
𝑛

𝑥
) is pronounced n choose x. The probability for observing x heads from a toss of n coins is 

the number of combinations C(n,x) times the probability of any single combination or C(n,x)(½)n.  Note 

the distribution is symmetric since C(n,x) = C(n,n-x). 

 What if our coins are not fair? A more general formulation will allow for unequal probabilities of 

the two possible states; e.g., p < 1 is the probability of heads, q <1 is the probability of tails, q + p = 1.  In 

this case the binomial probability distribution function, normalized to one is,  

   𝑃𝐵(𝑥, 𝑛, 𝑝) = (
𝑛

𝑥
) 𝑝𝑥𝑞𝑛−𝑥 =

𝑛!

𝑥!(𝑛−𝑥)!
𝑝𝑥(1 − 𝑝)𝑛−𝑥   (26) 

The distinctive feature of this binomial probability distribution is that it is determined solely by the 

number of objects, each with two possible states.  In situations where p = q the distribution will be 

symmetric.   

Let us consider an example using two fair coins (i.e., n = 2, p = ½, q = ½).  We can extract the probability 

of each outcome from equation (26): 

 𝑃𝐵 (𝑥, 2,
1

2
) =

2!

𝑥!(2−𝑥)!
(

1

2
)

𝑥

(
1

2
)

2−𝑥

=
2!

𝑥!(2−𝑥)!
(

1

2
)

2

, so: 

For x=0 head:  𝑃𝐵 (0, 2,
1

2
) =

2!

0!(2−0)!
(

1

2
)

2

=
1

4
  

For x=1 head: 𝑃𝐵 (1, 2,
1

2
) =

2!

1!(2−1)!
(

1

2
)

2

=
1

2
  

For x=2 heads: 𝑃𝐵 (2, 2,
1

2
) =

2!

2!(2−2)!
(

1

2
)

2
=

1

4
 

This agrees with our expectations in Table 3.  

 The binomial distribution’s name comes from the fact that when expanding the sum of two 

numbers raised to the power n, the coefficients of the expansion are given by (
𝑛

𝑥
); i.e., 



 

 

 (𝑝 + 𝑞)𝑛 = ∑ [(
𝑛

𝑥
) 𝑝𝑥𝑞𝑛−𝑥]𝑛

𝑥=0      (27) 

This is the binomial theorem. 

 The mean of the binomial probability distribution can be found from equations 4 and 27 and a 

little work for the last step to be 





n

x

B nppnxxP
0

),,(      (28) 

is the parent mean since we know the theoretical probability.  For equal probabilities, i.e. for fair 

coins, p = q = ½, then  = n/2 and the distribution is symmetric.  The standard deviation can be found 

from equations (8) and (27) and a little work to be 

)1(),,()(
0

22 pnppnxPxn B

x

 


     (29) 

If p = q = ½, then 𝜎2 =
𝜇

2
 or 𝜎 = √

𝜇

2
.  Figure 7 illustrates the theoretical distribution for two possible 

cases with 10 coins (n = 10) : 10 fair coins (q = p = ½) and 10 trick coins (q = 5/6, p = 1/6). 

 

Figure 7: Binomial Distributions for ten coins with 1:1 and 1:5 odds. 
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Experiment with the Binomial Distribution 

 You will now perform two experiments to look at the difference between fair coins and unfair 
coins. Since we don’t have any unfair coins at our disposal you will use dice as a proxy for the coins in 
both experiments. 

 In the fair coin experiment you will interpret  

o 1, 2 and 3 as heads 

o 4, 5, and 6 as tails. 

 In the unfair coin experiment you will interpret 

o 1, 2, 3, and 4 as heads 

o 5 and 6 as tails. 

Use nine dice and roll them N = 100 times (100 replicates of the experiment). As there is nothing to be 
gained from rolling your dice 200 times, extract one fair and one unfair data point from each roll. It will 
simplify (and expedite) your data taking to record 3 pieces of information from each roll: the number of 
dice with values 1-3, the number of dice with value 4, the number of dice with values 5-6. (Note that you 
could actually drop one of these columns, why?) 

It will help you to do your calculations if you have a data_frame so you can use the data editor (under 
the edit tab) to name your variables and enter your data: 

 Dice<-data.frame() 

For both interpretations of the experiment use R to: 

1. Calculate the sample mean number of heads. 

2. Calculate the sample standard deviation number of heads. 

3. Calculate the error in the sample mean number of heads. 

4. Plot a histogram of your data using histBinom(x,size,prob), in histDensity.R, and label significant 

features. Note that size is the number of coins per trial and prob is the probability of success. 

For those interested, dbinom(x,size,prob) is the built in binomial probability density function. 

5. Use equations (28) and (29) to calculate the theoretical mean and standard deviation.  Compare 

to your results to the results of steps 1 and 2.  Does this tell you anything? 



 

 

Conclusions 
 While there are more than three important distributions, the Gaussian, Poisson, and Binomial 

distributions occur time and time again in experimental situations and should be understood and 

appreciated.  Note further that there are several complications which occur frequently occur, which we 

have not discussed, but which deserve careful consideration; to name three: background, unresolved or 

partially resolved distributions, and unequal uncertainties.  Nonetheless, this introduction should 

provide you with sufficient information to indicate your best estimate of a measured value and the error 

to be associated with it for each of the remaining experiments in this course.  

 I make one final plea to stress the need to 

 making several measurements of the unknown quantity, and 

 plotting your results.   

Imagine you are to measure a certain unknown voltage several times.  You expect the errors inherent in 

such a measurement to be experimental, not due to counting, and so expect the distribution of 

measured values to be Gaussian.  With results in hand, you plot a histogram of your data. If you find the 

distribution to be skewed, then you would know immediately that something is amiss, either you are 

not collecting the data that you expected (and so have a systematic experimental error) or there is a 

flaw in your reasoning. You can infer this because the Gaussian distribution should be symmetrical. The 

skew in your data’s distribution is only detectable if you both collect enough data, and plot it. From one 

or two measurements you might never suspect that anything was wrong. 

WHEN YOU FINISH: LEAVE THINGS AS YOU FOUND THEM!  


