
 

 

 

Laboratory 13: Millikan Oil Drop 
Experiment 

Measurement of the Electric Charge  

Introduction 
 The discovery of the electron as a discrete particle of electricity is generally credited to the 

British physicist Sir J. J. Thomson (1856-1940). His extensive studies of cathode rays culminated in the 

quantitative observations of the deflection of these rays in magnetic and electric fields.  These 

researches led to methods for the measurement of the ratio of charge to mass (e/m) for the electron. In 

his famous oil-drop experiments, Robert A. Millikan (1868-1953) was able to measure the charge of the 

electron (1.60206 x 10-19 coulomb). The currently accepted value for e/m is 1.75890 x 1011 coulombs/kg, 

and hence the mass of the electron could be determined accurately. In this laboratory you will use the 

Millikan Oil Drop apparatus to measure the charge of the electron. 

 Each time you start a new observation with zero field and a squirt from the atomizer you will see 

a myriad of droplets falling through the field of view. Your problem will be to pick a droplet that is of a 

size such that, if it carries a charge of a few electrons (1-3 e), you will be able to pull it upward with the 

available electric force. To judge which droplet to pick you must estimate the terminal fall velocity and 

holding voltage of a suitable droplet. The velocity of a droplet is determined from a measurement of the 

time it takes it to fall the distance between two lines in the eyepiece.  

Apparatus Function:  
 The instrument consists of an oil drop changer with voltage controls, a microscope, an atomizer, 

and a built in stopwatch. The behavior of the oil drops can be observed with an eyepiece. The oil drop 

chamber is made of a cylinder with two precisely parallel plates. Oil drops fall from the oil mist chamber 

into the oil drop chamber through a hole of 0.4 mm in diameter in the upper plate, and they are 

illuminated with an LED. The behavior of the oil drops can be observed with the microscope. The 

eyepiece has a built-in scale to measure the distance a drop travels. The full vertical scale is equal to 

0.300 cm, with a minimum division of 0.050 cm.  

 The voltage switch controls the voltage between the two plates in the following ways: 

BALANCE: applies a voltage to keep a charged drop in balance or to move it up and down (it can be 

varied continuously between 0 – 500 V). 

DOWN: Removes the voltage between the plates so that the oil drops can fall freely. 

UP: Applies roughly double the BALANCE voltage (up to ~700 V) to force charged oil drops up in the 

chamber. 



 

 

 Before each use the oil drop chamber should be leveled with the leveling screws under the unit 

and the bubble level beside the chamber. 

Theory of Experiment: 
 Consider a spherical oil droplet falling through the air that has reached terminal velocity, the 

forces acting on the droplet are 

𝐹𝑔⃗⃗  ⃗ + 𝐹𝑏
⃗⃗⃗⃗ + 𝐹𝑑

⃗⃗⃗⃗ = 0      (1) 

Where 𝐹𝑔⃗⃗  ⃗ is the force of gravity on the sphere, 𝐹𝑏
⃗⃗⃗⃗  is the buoyant force from the air on the sphere, and 

𝐹𝑑
⃗⃗⃗⃗ is the force of drag from the air on the sphere. Gravity and buoyance depend on the drop’s radius r 

and density  as well as the density of the air air  
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⃗⃗⃗⃗ ‖ = 0.    (2) 

The force of drag is more requires more care. The simplest form for the drag on a slow moving sphere is 

given by Stoke’s drag ‖𝐹𝑑
⃗⃗⃗⃗ ‖ = 6 𝜋 𝜂 𝑟 𝑣𝑑  where vd is the terminal down and  is the air’s coefficient of 

drag. When r is comparable in size to the mean free path of the air molecules a correction is needed. 

The experiment employs oil droplets which are light enough to be suspended or drawn upward by the 

electric force exerted on just a few (1 to 10) electronic charges by a field of a hundreds volts/cm. Such 

droplets have radii that are typically not very large compared to the mean free path of air molecules, 

which is 2.2 x 10−6 cm at normal temperature and pressure. In this case the expression for the drag force 

is divided by factor (1+ a/r+O(1/r2)), where a is a constant of the order of the mean free path. Thus 

keeping only the first term in the correction in the drag coefficient during free fall the equation 

representing the balance of forces is  
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= 0      (3) 

where g is the acceleration of gravity. The term in brackets on the right hand side of equation (3) 

approaches unity as the radius becomes large compared to a. It turns out that the radii of the typical 

droplets used in this experiment are large enough so that a/r <<1. To zeroth order in a/r, but still to high 

accuracy, we find the radius of the drop to be  

𝑟𝑜 = √
9 𝜂 𝑣𝑑

2 (𝜌−𝜌𝑎𝑖𝑟)𝑔
     (4) 

Then rewriting Eq. 3, which is first order in a/r, in terms of ro 

𝑟1
3 =
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2𝑟1

1+𝑎/𝑟1
.      (5) 

Solving for r1 
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But since we kept only first order terms in our force balance equation we should still only keep first 

order terms and Equation 6 becomes 

𝑟1 = 𝑟𝑜 (1 −
𝑎

2𝑟𝑜
)      (7) 

A charged droplet in the presence of an electric field will have a new force on it and Eq. (1) becomes 

𝐹𝑔⃗⃗  ⃗ + 𝐹𝑏
⃗⃗⃗⃗ + 𝐹𝑑

⃗⃗⃗⃗ + 𝐹𝑒⃗⃗  ⃗ = 0     (8) 

Droplet carrying a charge ne and move upward with terminal velocity vup under the influence of an 

electric field E= V/s between two parallel plates separated by the distance s and a potential difference V, 

the equation of motion is  
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Subtracting equation (3) to equation (9) and solving for ne, we obtain  

𝑛𝑒1 =
6 𝜋 𝜂 𝑟1 𝑠

𝑉
 
(𝑣𝑑 + 𝑣𝑢𝑝)
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Which is, to the same order in a/r, equivalent to 

𝑛𝑒1 =
6 𝜋 𝜂 𝑠 (𝑟1−𝑎)

𝑉
 (𝑣𝑑 + 𝑣𝑢𝑝)     (10) 

 If we knew the value of a, the factor in Stoke's law that corrects for the effects of the granularity 

of air, then for each droplet we could find the value of ne and seek the greatest common divisor of the 

set of values, which would be the likely value of e1. The problem is how to determine a. For this purpose 

we define eo to be the zeroth order approximation to the charge on the electron 

𝑒𝑜 =
6 𝜋 𝜂 𝑠 (𝑟𝑜)

𝑛 𝑉
 (𝑣𝑑 + 𝑣𝑢𝑝)            (11) 

which we can calculate explicitly 

𝑒𝑜 =
6 𝜋 𝜂 𝑠 
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Substituting Equation (11) into equation (10) and rearranging we obtain  

𝑛𝑒1 = 𝑛𝑒𝑜
𝑟1−𝑎

𝑟𝑜
       (13) 

Or, again to the same order in a/r, 



 

 

𝑒𝑜 = 𝑒1 (1 +
3𝑎

2𝑟𝑜
)     (14) 

 Many measurements of neo for drops of various radii will yield a collection of values; 

presumably, each is close to an integer multiple of the fundamental unit of charge. When the numbers 

of unit charges involved in each of the measurements has been figured out, then each measurement, 

divided by the proper integer number, yields a value of eo. A plot of eo against 1/ro should show data 

points clustered around a line with a slope equal to 3 a e1/2 and an intercept of e1 on the 1/ro = 0 axis 

(corresponding to 𝑟 → ∞). Note that e1 is the best estimate of e we can determine.  

 Note: You can obtain results of impressive accuracy in this experiment provided you take care in 

reducing random errors of measurement. The most important thing of all is to select appropriately sized 

droplets carrying very few elementary charges: 1e to 3e or 4e. Make a preliminary analysis of the data 

for each droplet immediately after you obtain it so that you can perfect your judgment as to which 

droplets to select and what voltages to use. The timing measurements are like a video game in which 

practice makes perfect. N repetitions of any given measurement will reduce the random error of the 

mean in proportion to N1/2.  

Experimental Procedure: 
 Determine when the microscope is focused at the center of the chamber. This can be done by 

placing the needle tip at the center of the chamber (the needle for loading the bulb fits through the top 

hole in the chamber) and then focusing on the tip. The tip will be big and bright. 

 Remove the needle and adjust the eyepiece (it rotates) so that the grid is in sharp focus for your 

eye. Apply an intermediate electric potential (~200V) with the switch in the BALANCE position. Spray 

droplets of oil from the atomizer through the microscope port into the chamber (take it easy, one small 

squirt is generally sufficient after you have primed the atomizer with a few squirts into a towel). As the 

droplets drift in the chamber they are illuminated by the LED light. 

 When you see a droplet through the microscope as a slowly drifting unresolved point of 

diffracted light, release the droplet and watch it fall by toggling the switch to DOWN. Toggling the switch 

to UP will cause the drop to rise. If the droplet’s motion is influenced by the electric force, then clearly 

the droplet is charged and an increase in the BALANCE voltage may arrest or reverse its motion. If the 

droplet accelerates downward under the action of electric force, the voltage should be reversed. If the 

electric field has no effect, then the droplet you are following is not charged at all. Try another droplet. 

When you catch one that works, i.e. it drifts slowly downward (~15 s fall time indicates the drop has 

about the optimum weight) in the switch in the DOWN position and can be lifted by the voltage applied 

with in the switch in the UP position your drop will have only a few excess charges of one sign or the 

other. 

 Using as your race track the gap between two horizontal lines of the eyepiece, measure the 

free-fall times with the voltage off and the rise times with the voltage on for one droplet. Repeat as 

many times as possible or as long as you have patience. When you think you have your first really good 

set of repeatable data for one droplet, stop and analyze it, and derive the value of the charge on the 



 

 

 

droplet. If everything seems reasonable and your value is close to a small (~1-5) integer multiple of the 

known value of e, proceed to get data on more drops at different BALANCE voltages, working with each 

one as long as possible, and analyzing the data after each droplet is finished. Try to observe several with 

the shortest free-fall time (largest radius) you can measure accurately in order to have a good basis for 

extrapolating your values of 𝑒𝑜 to ′ → ∞ . 

 Air currents can be a problem in this experiment. Take care that the chamber is well sealed, and 

reduce as much as possible any movement of air in the room.  

 You may find the following procedure convenient: 

 Pull the droplet above the top line by toggling the switch to UP. 

 Toggle the switch to DOWN (V=0V) and measure the time to fall from the top to the bottom line 

of the eyepiece. Keep your left hand on the timer controls and your right hand on the voltage 

controls 

 After the droplet has passed the bottom line arrest the downward motion by toggling the  

switch to BALANCE. 

 Read and record the fall time, taking care that you will be able to identify the droplet after you 

have looked away for a moment to read and record the clock. 

 Measure and record the BALANCE voltage that renders the droplet exactly stationary (vup = 0). 

 Toggle the switch to UP to pull the droplet up measuring the time to cross the top line and the 

voltage applied. 

Repeat the sequence many times to reduce the random errors of the time and voltage measurements. 

 Tabulate your data in a format that will allow you to reduce it in an orderly fashion in adjacent 

columns. You will find that it takes a considerable amount of practice to achieve high accuracy in this 

experiment. All members of a team should perfect their skill at making all the various measurements. 

The more droplets you measure and the more data you accumulate on each droplet, the more accurate 

will be your final result. 

 For each droplet find the value of 𝑟𝑜 and 𝑒𝑜 and the errors. Plot 𝑒𝑜against 1/𝑟𝑜. Determine the 

slope (3 𝑎 𝑒1/2), intercept (𝑒1) and errors by linear regression. From these results compute your best 

estimate for a and e and their errors. Take special care in understanding and evaluating the random and 

systematic errors. 

 

 

 



 

 

 The values of the constants are given below, but don’t trust the oil density: 

Oil density 981 kg/m3 

Air viscosity  ×kg/(m sec) 

Atmospheric pressure P=76.0 cmHg 

Plate separation d=5×10-3m 

 

 

WHEN YOU FINISH: LEAVE THINGS AS YOU FOUND THEM! 
   


