MCS/PHY 186 Homework for chapter 7.

1. Downey 7.1

Pick three of the following five questions.
2. Speeding up on a bicycle:

The following equation relates the speed, v, of a person on a bicycle

$$
\frac{d v}{d t}=\frac{P}{m v}
$$

With a combine mass of m, pedaling with power P, at time t. Find how long it takes a person to reach $6 \mathrm{~m} / \mathrm{s}$ if $\mathrm{m}=70 \mathrm{~kg}, \mathrm{P}=100 \mathrm{~W}$ if they were initially moving at $1 \mathrm{~m} / \mathrm{s}$.
3. Population dynamics:

The number of creatures living in an enclosure can be described by the following differential equation:

$$
\frac{d N}{d t}=a N-b N^{2}
$$

Where N is the number of creatures alive, a measures how quickly they reproduce and b measures how much they compete with each other (rabbit on rabbit mortality rate). Start with two rabbits in a cage (large cage), use $a=\frac{6}{y r}$ (female snowshoe rabbits have litters of 3-4 2-5 times a year), $b=\frac{1}{500 y r}$ and a time step of deltaT=3 months to determine:
i. The number of animal alive at the end of 10 yrs
ii. How long it takes the population to reach 3000 rabbits.

If you are surprised by the results of ii in light of i you might consider looking at the population at each time-step of part i .
4. Loan interest:

Banks make money from you by, among other things, giving out loans. The following differential equation describes the principle, P , that you owe while you are paying back your loan given an interest rate, I, and a repayment amount, RP

$$
\frac{d P}{d t}=I P-R P
$$

Using an initial loan amount of $\$ 1000$, and interest rate of $15 \% /$ year, a monthly repayment of $\$ 20$, and deltaT=1 month to find:
i. The time it takes to repay the entire loan
ii. The amount of money the bank makes/you lose in this transaction.
5. Bicycle extension:

Question 2 ignored the effect of the force of drag from the air. Since the wind will slow the biker down we should subtract $F_{\text {air }} / m$ from the right hand side

$$
\frac{d v}{d t}=\frac{P}{m v}-\frac{F_{a i r}}{m}
$$

where

$$
F_{\text {air }}=\frac{\rho \text { Area }^{2}}{2}
$$

and $\rho=1.25 \mathrm{~kg} / \mathrm{m}^{3}$ is the density of air and Area $=0.33 \mathrm{~m}^{2}$ is the cross-section of the person and bike. Keeping the same parameters and initial conditions (starting values for variables) as in question 2 to find how long it takes the biker to reach a speed of $6 \mathrm{~m} / \mathrm{s}$.
6. Population dynamics extended:

The situation for the bunnies becomes more dire if they reproduce more quickly. Start with the same two rabbits in a cage (large cage), and increase the reproduction rate to $a=\frac{9}{y r}$. Keep $b=$ $\frac{1}{500 y r}$ and a time step of deltaT=3 months and find the number of rabbits: Examine the number of living animal between 7 and 10 yrs. What do you notice and how would you interpret your results?

