MCS/PHY 186 Homework for chapter 7.

1. Downey 7.1

Pick two of the following three questions.
2. Bicycle with drag:

In class we used the following equation to find the speed of a bicycle pedaled by a person

$$
\frac{d v}{d t}=\frac{P}{m v}
$$

Where the left hand side of the equation is the acceleration and the right hand side is the force/mass. This ignores the effect of the force of drag from the air. Since the wind will slow the biker down we should subtract $\mathrm{F}_{\text {air }} / \mathrm{m}$ from the right hand side, where

$$
\frac{F_{a i r}}{m}=\frac{\rho A r e a^{2}}{2 m}
$$

Use $\rho=1.25 \mathrm{~kg} / \mathrm{m}^{3}$ and Area $=0.33 \mathrm{~m}^{2}$ and keep the same parameters and initial conditions (starting values for variables) as for the example in class to find how long it takes the biker to reach a speed of $6 \mathrm{~m} / \mathrm{s}$.
3. Population dynamics:

The number of creatures living in an enclosure can be described by the following differential equation:

$$
\frac{d N}{d t}=a N-b N^{2}
$$

Where N is the number of creatures alive, a measures how quickly they reproduce and b measures how much they compete with each other. Start with two rabbits in a cage (large cage) and use the reproduction rate $a=3 /$ year and $b=0.000001 /$ year and a time step of deltaT=lyr to determine:
i. The number of animal alive at the end of 20 yrs
ii. How long it takes the population to reach 1 million.

If you are surprised by the results of ii in light of i you might consider looking at the population for each year of the 20 yrs of part i .
4. Loan interest:

Banks make money from you by, among other things, giving out loans. The following differential equation describes the principle, P , that you owe while you are paying back your loan given an interest rate, I, and a repayment amount, RP

$$
\frac{d P}{d t}=I P-R P
$$

Using an initial loan amount of $\$ 1000$, and interest rate of $15 \% /$ year, a monthly repayment of $\$ 20$, and deltaT=1 month to find:
i. The time it takes to repay the entire loan
ii. The amount of money the bank makes/you lose in this transaction.

