Thermodynamics 2nd HW

Chapter 2: Conceptual Questions: 2.2C, 2.17C, 2.37C, 2.55C 2.10, 2.14, 2.39, 2.45, 2.61, 2.69, 2.91, 2.95, 2.101, 2.107

In addition to the above questions from the text please also answer:

- A. What is a boundary layer? How does a thermodynamic boundary layer differ from a hydrodynamic boundary layer?
- B. Calculate the Reynolds number for 300K air flow across the outside of a pipe with a diameter of 2.0cm flowing at a speed of 10m/s.
- C. Calculate the critical speed for water flow through the inside of the pipe in question B. Note that the critical Reynolds number is 2300.
- D. How does the convective coefficient h relate to the Nusselt number? What is its value for fully developed laminar flow inside a pipe given that the pipe surface is kept at a constant temperature?

	ρ (kg/m ³)	C _p (kJ/kg K)	μ (N s/m ²)	k (W/m K)	Pr ()
Air at 300K	1.161	1.007	18.46e-6	26.3e-3	0.707
Water at 365K	965	4.209	306e-6	677e-3	1.91