Computational Physics - HW \#3b

1. 3.4 .18
2. 3.4 .27
3. In the 4-D Euclidean vector space [you can think of this as position given by $(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})]$ and the distance between the points:
(a) $(4 \mathrm{~m},-1 \mathrm{~m}, 2 \mathrm{~m}, 7 \mathrm{~m})$ and $(2 \mathrm{~m}, 3 \mathrm{~m}, 1 \mathrm{~m}, 9 \mathrm{~m})$
(b) $(3 \mathrm{~m}, 5 \mathrm{~m}, 2 \mathrm{~m}, 8 \mathrm{~m})$ and $(2 \mathrm{~m}, 6 \mathrm{~m}, 2 \mathrm{~m}, 8 \mathrm{~m})$
4. In the 4-D Minkowski vector space [you can think of this as the locations of events in space-time given by $(\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z})$] consider the vectors pointing to the following events: ($4 \mathrm{~ns},-1 \mathrm{~m}, 2,7$) and ($2 \mathrm{~ns}, 3 \mathrm{~m}, 1 \mathrm{~m}, 9 \mathrm{~m}$)
(a) Find the distance between the events.
(b) Find the innerproduct between the two events.
5. Consider the generalized 2-D vector space with inner product $\vec{V}_{1} * \vec{V}_{2}=$ $\int_{0}^{2 \pi} V_{1} V_{2} d x$ spanned by the vectors $\vec{e}_{1}=\cos (x)$ and $\vec{e}_{2}=\sin (x)$.
(a) What is the projection of the vector $\vec{v}=\sin (x+\pi 3)$ on \vec{e}_{1} ?
(b) What is the projection of the vector $\vec{v}=\sin (x+\pi 3)$ on \vec{e}_{2} ?
(c) What is the magnitude of \vec{v} ?
6. 3.14.4
