1. Using the integration method presented in class find the moment of inertia of washer shaped object rotated about its center as though it was a wheel. The washer has a mass M, an inner radius a (radius of the hole) and an outer radius b (radius of washers edge). Compare your result to that found in the table 11-2 of your textbook.
2. Using the integration method presented in class find the moment of inertia of a rectangle rotated about its corner with an axis that is perpendicular to the rectangle. The rectangle has a mass M, is L long and W wide. (Hint: you may want to relate both M and r to cartesian coordinates). Check your result using the information found in table 11-2 of your textbook.
