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Chondrules

e Igneous textures

e What process could have melted ~ 1027 g of
rock in the solar nebula?

e Constraints on thermal histories from
- Retention of volatiles
- Textures
— Zoning in minerals
- Etc.
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Constraints on Thermal Histories
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Textures, number of nuclei remaining

Retention of
volatiles,
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relict grains, lack
of isotopic
fractionation of S.

Retention of volatiles.
Cooling rates > 5000 K/hr.

Textures, zoning in minerals.
Cooling rates 10-1000 K/hr.

Presence of volatiles. t




Chondrule Formation in Nebular Shocks

L a

1500 Chondrules heated before
reaching shock front.
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Previous Shock Models — Problems
(identified by Desch, Ciesla, Hood, & Nakamoto; 2005)

e Post-shock boundary condition for the
radiation field far from the shock.

e Opacity
— Only Desch & Connolly (2002; hereafter DC02)
considered micron-sized dust, but value too low.
e Evaporation of Dust
- DCO02 set dust evaporation temperature at 2000 K.
— Dust evaporates over a range near 1500 K.
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Previous Shock Models — Problems
(identified by Desch, Ciesla, Hood, & Nakamoto; 2005)

e Line cooling

NN\

H,O energy levels

— lida et al. (2001) assume all line photons escape
(optically thin limit).

- DCO02 and Ciesla & Hood (2002) neglect line
cooling (optically thick limit).

-~ MNOG include line cooling incompletely (no
absorption by dust).

c
zZZ

ZE
34
=



_ 2 hv | ET
e = S(T) <8W % kT 2!/—) — Lire = Z At Pesc (T’u.{-. T(l)

T e~ /KT _q

| no dust

solar dust/gas

| I | I |

0™ 10'8 108 WO2OWQ221“>24
LO@WO<NHQO/Cm2>

Morris et al. 2009 , |
FSUNsm ™



5000 ¢

1000 N
- with dust
O | — — — — without dust
10 10" 104 10° 107

Morris et al. 2009

Fsl

ARIZONA STATE
UNIVERSITY



New results

V=8 km s
Po=10°gcm3

Ps/Pg =5 x 1072
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Backwarming
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- temperature of
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Recombination of Hydrogen
-

e Recombination of hydrogen adds energy to gas,
slowing cooling rates.

e Fraction of hydrogen that is atomic: f=—
nH + 2nH,
e Heating rate per recombination: p~ 4 4 €
J P L= 5 g7 Mror (3)
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e New cooling rate: (dl'\ _ (dL 1_na(E_ NG
(dﬁ - \dt ), (=1 (Er ) dl’
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Backwarming: reduces cooling rates by factor of ~ 3
Hydrogen recombination: reduces cooling rates by factor of ~ 25

Cooling rates reduced by 2 orders of magnitude!
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In 10° s gas has moved to N,;,, ~ 10?2 cm-?
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Conclusion
« 007

e Hydrogen buffers the gas until it's optically thick to
line radiation.

—- Reduces line cooling to ~ 200 K/hr.
e Chondrules
- Thermal exchange with gas ~ 5%
e Effect of line cooling on cooling rates of chondrules:

at most ~ 10 K/hr = neqgligible
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SNSRI
hydrogen recombination
releases chemical energy |
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Recombination of hydrogen adds energy to gas, slowing cooling rates.
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The reduction of cooling rates, B =[(1 - f) + (e/k = T ) df/dT ],
due to hydrogen recombination
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Nebular Shock Model
«{a ]

e Nebular shock model consistent with:
— size of chondrule-forming region
— chondrule-matrix complementarity
- frequency of compound chondrules
- maximum size of chondrules, etc. etc.

e Nebular shock model predicts:

- higher chondrule density correlates with higher T, faster
cooling, and compound chondrule frequency — compound
chondrules should include more barred olivines.

- NB: non-compound chondrules are < 15% barred olivines;
compound chondrules are > 70% barred olivines
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