Phyllosilicate Emission from Protoplanetary Disks

Is the Indirect Detection of Extrasolar Water Possible?

Melissa A. Morris Missouri State University March 25, 2010

Outline

- What are phyllosilicates?
- Why are they important?
- Are phyllosilicates expected in proplyds?
- How are phyllosilicates detected?
- Can phyllosilicates be detected?

What are Phyllosilicates?

- Sheet silicates (Greek "phyllon")
- Two types
 - Octahedral (O) sheets
 - two planes of anionic groups
 - dioctahedral or trioctahedral
 - Tetrahedra (T) sheets
 - tetrahedrally coordinated cations
- O & T sheets join to form layers
 - Weakly bonded

chlorite

kaolinite

What are phyllosilicates?

- Silicate rock + water at low temperature
 → clay minerals (fine-grained, < 0.002 mm)
- Mineral formed depends on
 - Parent rock
 - Temperature
 - Amount and chemistry of water
 - Time

Why Phyllosilicates?

- Phyllosilicates
 - product of aqueous alteration of silicate rock
 - diagnostic of liquid water
 - LAWKI (requires source of free energy, carbon, liquid water)
 - found in meteorites-mass fraction up to 40-90%
 - (Tomeoka & Buseck 1990; Buseck & Hua 1993; Rubin 1997)
 - Matrix (Fe-rich)
 - Rims around chondrules (Mg-rich)
 - zodiacal dust modeled with 20% (Reach et al. 2003)

Table 1. Phyllosilicates found in chondrites

Saponite	Serpentine	Montmorillonite	Cronstedtite
CI	CM	CI	CM
CV	CO		
CR	CR		
ord. chond.			
IDPs			

- Saponite ([Ca/2,Na]_{0.33}[Mg,Fe²⁺]₃[Si,Al]₄O₁₀[OH]₂·4H₂O)
- Serpentine ([Mg,Fe]₃Si₂O₅[OH]₄)
- Montmorillonite ([Na,Ca]_{0.33}[AI,Mg]₂Si₄O₁₀[OH]₂·n[H₂O])
- Cronstedtite (Fe²⁺Fe³⁺[Si,Fe³⁺]O₅[OH]₄)

Are Phyllosilicates Expected?

- Majority of Earth's water delivered by planetesimals (Morbidelli et al. 2000; Raymond et al. 2004; Mottl et al 2007)
 - at most 10% from comets (Morbidelli et al. 2000)
- D/H ratio in VSMOW ~ carbonaceous chondrites (Drake & Righter 2002)
 - D/H ratio in comets too high (Eberhardt et al. 1995; Bockelee-Morvan et al. 1998; Meier et al. 1998; Drake & Righter 2002)
 - Probability of comet collisions too low (Levison 2001; Morbidelli et al. 2000)
 - Comets introduce too much Ar and other noble gases (Swindle & Kring 1997, Owen & Bar-Nun 1995, Morbidelli et al. 2000; Drake & Righter 2002)
- Carbonaceous chondrites ~ 10 wt% water
 - formed in outer asteroid belt (Gradie & Tedesco 1982)
- Ordinary chondrites ~ 0.5-0.1 wt% water
 - formed in inner asteroid belt (Gradie & Tedesco 1982)
- Water in chondrites mainly in hydrous minerals
 - phyllosilicates

Are Phyllosilicates Expected?

- Protoplanetary disks
 - Disk lifetimes ~ 3-10 Myr (Haisch et al. 2001)
 - Formation of km-sized bodies 10⁴ 10⁵ yrs (Weidenschilling 2000; Woolum & Cassen 1999)
 - \rightarrow planetesimals in T Tauri disks
- Numerical simulations of coagulation of dust and accretion of larger bodies (Weidenschilling 2000)
 - Planetesimals built up and torn down in < 1 My
 - Half the mass in planetesimals
 - Half in dust eroded from larger planetesimals
- Dust shed from asteroids
 - Present asteroid belt: 10²⁰ g (Nesvorny et al. 2006)
 - In primordial belt: ~ 10^{27} g after 10^5 yr
- Estimate of 3% phyllosilicate abundance
 - Mass fraction of phyllosilicates of 30%
 - Produced in 10% of the disk (2-4 AU)

Are Phyllosilicates Expected?

- Debris disks too faint (Morris & Desch 2009)
 - Column density of debris disks ~ 10^{-4} 10^{-7} g cm⁻²
 - Column density of protoplanetary disks ~ 10^{-3} g cm⁻²
 - Flux difference in excess of ~ 10^3
- "Waterworlds" hyposthesis (Desch & Leshin 2004)
 - Water abundance dependent on amount of ²⁶AI
 - Planetesimals with less ²⁶Al would never melt ice
 - No phyllosilicates produced on planetesimals
 - Would not be detected in exozodiacal dust

How are Phyllosilicates Detected?

How are Phyllosilicates Detected?

Model SEDs of a flat, blackbody disk and a flared, blackbody disk from Chiang & Goldreich (1997). Note the flattish spectrum of the flared disk (from 1 - 300 μ m) compared to the much steeper spectra of the flat disk. This results because flared disks capture and reprocess more stellar radiation, although typically at lower T and larger .

MIR Spectra of Silicates

- SiO₄ tetrahedral structures
- 10 µm feature due to Si-O vibration mode
- 20 µm feature due to Si-O-Si bending mode
- Features seen in both absorption/emission
 - depends on optical depth and grain temperature
- Amorphous (glassy) silicates
 - broad, smooth spectral profiles
- Crystalline silicates
 - substructure with sharp/distinct features
- Diagnostic of stoichiometry

How are Phyllosilicates Detected?

- Characteristic emission features in the MIR
- 10 µm and 20 µm features
- Absorption feature at 6 μ m due to H₂O
- Differences between Fe-rich and Mg-rich
- Distinctive substructure particular to mineral

Model SED

- Minerals (other than phyllosilicates) based on models of Pollack et al. (1994) & Gail (2003, 2004)
- Phyllosilicates based on meteorite abundances
 - Optical constants measured for phyllosilicates
 - Opacities calculated using Mie theory
 - Distribution of Hollow Spheres (best fit Min et al. 2003)
- Disk model based on Chiang & Goldreich (1997)
 - Corrected effective temperature (factor of 21/4)
 - Actual dust opacities used
 - 1993 Kurucz models used for central star

Absorption Properties

• Homogeneous spheres, where $|m|x \ll 1$ (x = $2\pi a/\lambda$)

$$Q_{abs} = 4x \operatorname{Im}\left\{\frac{m^2 - 1}{m^2 + 2}\right\} \left[1 - \frac{4x^3}{3} \operatorname{Im}\left\{\frac{m^2 - 1}{m^2 + 2}\right\}^2\right]$$

• Long λ limit, where $|m|x \ll 1$ and $x \ll 1$

$$Q_{abs} = 4x \operatorname{Im}\left(\frac{m^2 - 1}{m^2 + 2}\right)$$

• If scattering small compared to absorption $(k=2\pi/\lambda)$

$$C_{abs} = k \operatorname{Im}\left(\alpha\right)$$

Absorption Properties

• Ellipsoids, Rayleigh approximation

 $C_{abs} = kV \operatorname{Im} \left(\alpha_1 + \alpha_2 + \alpha_3 \right)$

• Polarizability per unit volume

$$\alpha_i = \frac{m^2 - 1}{3 + 3L_i \left(m^2 - 1\right)}$$

• $L_1 + L_2 + L_3 = 1$, for homogeneous spheres, $L_i = \frac{1}{3}$

$$\alpha_i = \frac{m^2 - 1}{m^2 + 2}$$

Shape Distributions

Collection of randomly oriented ellipsoids

$$\langle C_{abs} \rangle = kV \int_0^1 dL_1 \int_0^{1-L_1} dL_2 \operatorname{Im} \left(\alpha_1 + \alpha_2 + \alpha_3\right) \mathcal{P}(L_1, L_2)$$
$$= kV \operatorname{Im} \left(\bar{\alpha}\right)$$

• Continuous Distribution of Ellipsoids (CDE) $\mathcal{P}(L_1, L_2) = 2$

$$C_{abs} = 2kV \operatorname{Im}\left(\frac{m^2}{m^2 - 1} \ln m^2\right)$$

- Continuous Distribution of Spheroids (CDS) $\mathcal{P}(L)=1$
 - Used outside the Rayleigh limit
- Uniform Distribution of Spheroids (UDS)
 - Not possible to find an analytic expression for $\,\bar{\alpha}$

Distribution of Hollow Spheres

- Inhomogeneity in composition or porous inclusions
- Particles with vacuum inclusions (with m = 1)

$$V = \frac{4}{3}a^3 \,(1-f)$$

$$\alpha = \frac{\left(m^2 - 1\right)\left(2m^2 + 1\right)}{\left(m^2 + 2\right)\left(2m^2 + 1\right) - 2\left(m^2 - 1\right)^2 f}$$

$$\langle C_{abs} \rangle = kV \operatorname{Im} (3\alpha)$$

= $4\pi a^3 k \operatorname{Im} \left[\frac{(1-f)(m^2-1)(2m^2+1)}{(m^2+2)(2m^2+1)-2(m^2-1)^2 f} \right]$

Fig. 1. Q_{abs} for 1 µm grains of amorphous forsterite and amorphous enstatite, calculated from n and k from Jäger et al. (2003). Note that Q_{abs} decreases much more rapidly than $1/\lambda$.

Fig. 2. Q_{abs} for for 1 μ m grains of crystalline olivine and crystalline enstatite, calculated from n and k from Fabian et al. (2001) and Jäger et al. (1998), respectively.

Fig. 3. Q_{abs} for 1 µm grains of troilite, quartz, and hibonite, calculated from n and k from Begemann et al. (1994), Henning & Mutschke (1997), and Mutschke et al. (2002), respectively.

Fig. 4. Q_{abs} for cronsteductive calculated from n and k determined by Tim Glotch.

Grain Composition

(Grain size of 0.1 $\mu\text{m})$

Table 4. Relative percentages of the minerals used in modeled SEDs.

	Mineral Percentages			
	Without Phyllosilicates	With Phyllosilicates		
amorphous forsterite	58	55		
amorphous enstatite	32	32		
crystalline olivine	3	3		
crystalline enstatite	2	2		
FeS (troilite)	2	2		
quartz	2	2		
hibonite	1	1		
saponite	0	3		

Is Detection Possible?

- Although significant difference with and without inclusion of phyllosilicates, broad differences are difficult to detect.
- Easier and more reliable to compare distinct features that can be isolated from background.
 - Higher emission at 21 µm than 24 µm with phyllosilicates
 - Higher emission at 24 µm than 21 µm without phyllosilicates

Seems to hold true for most other phyllosilicates (other than cronstedtite)

35

30

with 3% montinorillonite; \Re = 1.282 without phyllosilicates; \Re = 0.882

10

15

20 25

 $\lambda \ (\mu m)$

Telescope	Instrument	R ¹	Sensitivity ²	t ³
Spitzer	IRS	600	0.4 mJy	21.8 s
SOFIA	EXES	3000	2.7 Jy	59.8 s
Gemini North	Michelle	110	14 mJy	920.9 s
IRTF	MIRSI	100	100 mJy	383.8 s
JWST	MIRI	3000	5x10 ⁻²⁰ Wm ⁻²	8.3 x 10 ⁻⁵ s

- ¹Spectral resolution, R = $\lambda/\Delta\lambda$, is given at the relevant wavelengths (21 and 24 µm). ²Sensitivities listed for IRS, EXES, Michelle, MIRSI, and MIRI are, 1 σ for an integration time of 512s, 4 σ for an integration time of 900s, 5 σ for an integration time of one hour, 1 σ for an integration time of 60s, and 10 σ for an integration time of 10,000s. ³Minimum integration times necessary to achieve a 1 σ detection of ratio.
- Assumptions
 - Shot-noise limited
 - Difference in emission due to phyllosilicates small compared to total
 - Source is bright compared to the background
 - Dark current is negligible

Conclusions and Implications

- The most common phyllosilicates found in meteorites should be detectable in protoplanetary disks, at a level of 3%, by examining the ratio of the emission at 21 µm to the emission at 24 µm.
- Detection of phyllosilicates
 - Identification of a new mineral in disks
 - First indication of liquid water outside Solar System
 - Indicate similarity to Solar System
- Use improved disk model (Desch research group) to produce SEDs
- Large amounts of archived data on protoplanetary disks as a part of the Spitzer Legacy Science Program.
 - MSU NASA MO Space Grant intern, Aron McCart, currently mining data
- Results could be used in planning future observations with SOFIA and JWST
- Provide a test for the "waterworlds" hypothesis

Thank You!