1 Dependent and Independent Events

Let A and B be events. We say that A is independent of B if $P(A \mid B)=P(A)$. That is, the marginal probability of A is the same as the conditional probability of A, given B. This means that the probability of A occurring is not affected by B occurring. It turns out that, in this case, B is independent of A as well. So, we just say that A and B are independent.

We say that A depends on B if $P(A \mid B) \neq P(A)$. That is, the marginal probability of A is not the same as the conditional probability of A, given B. This means that the probability of A occurring is affected by B occurring. It turns out that, in this case, B depends on A as well. So, we just say that A and B are dependent.

Consider these events from the card draw: $A=$ drawing a king, $B=$ drawing a spade, $C=$ drawing a face card.

Events A and B are independent. If you know that you have drawn a spade, this does not change the likelihood that you have actually drawn a king. Formally, the marginal probability of drawing a king is $P(A)=4 / 52$. The conditional probability that your card is a king, given that it a spade, is $P(A \mid B)=1 / 13$, which is the same as $4 / 52$.

Events A and C are dependent. If you know that you have drawn a face card, it is much more likely that you have actually drawn a king than it would be ordinarily. Formally, the marginal probability of drawing a king is $P(A)=4 / 52$. The conditional probability that your card is a king, given that it is a face card, is $P(A \mid C)=4 / 12$, which is much larger than $4 / 52$.

Recall the events of facing a left-handed pitcher and getting a hit from the last lecture. These events are dependent because, if the pitcher is left-handed, the chances of getting a hit are different (in fact, higher) than they would be ordinarily. Formally, $P($ getting a hit $)=0.3$ but $P($ getting a hit \mid pitcher is left-handed $)=0.5$.

2 Complementary Events

Recall that an event is a subset of the sample space. The complement of an event is another event, consisting of the remaining elements of the sample space. If A is an event, we let A^{c} denote the complementary event. The probability of an event and the probability of its complement are related by $P\left(A^{c}\right)=1-P(A)$.
[picture]
For example, from the die roll, consider the event of rolling at least a 5 . This has probability $2 / 5$. The complementary event is rolling less than a 5 . This has probability $1-2 / 5=3 / 5$.

3 Mutually Exclusive Events

Events A and B are said to be mutually exclusive if they have no outcomes in common. Equivalently, A and B can not happen at the same time.
For example, from the die roll, consider the two events of rolling a 3 and rolling a 6 . These are mutually exclusive because you can not roll a 3 and a 6 at the same time.
Complementary events are mutually exclusive. However, mutually exclusive events need not be complementary.

4 Probability of Intersection of Events

Let A and B be two events. Their intersection, denoted by $A \cap B$ or A and B is the event consisting of outcomes which are common to both A and B. That is, A and B occurs when both A and B occur simultaneously.
[picture]
The fraction of the sample space which is in A is $P(A)$. The fraction of A which is also in B is $P(B \mid A)$, the conditional probability that B occurs, given that A occurs. Therefore, the fraction of the sample space which is in both A and B is $P(A) P(B \mid A)$.
We could arrive at another result by interchanging the roles of A and B. The fraction of the sample space which is in B is $P(B)$. The fraction of B which is also in A is $P(A \mid B)$, the conditional probability that A occurs, given that B occurs. Therefore, the fraction of the sample space which is in both B and A is $P(B) P(A \mid B)$.

Evidently, we have two equivalent formulas for the probability of the intersection of A and $B, P(A$ and $B)=$ $P(A) P(B \mid A)$ and $P(A$ and $B)=P(B) P(A \mid B)$. Sometimes $P(A \mid B)$ is known but $P(B \mid A)$ is not. Use whichever one is known.

If A and B are independent, then $P(B \mid A)=P(B)$ and $P(A \mid B)=P(A)$, so these formulas both collapse to $P(A$ and $B)=P(A) P(B)$.
As an example, consider a single die roll and the two events $A=$ rolling a 4 or less and $B=$ rolling a 4 or a 5 . Since B consists of 2 outcomes, $P(B)=2 / 6$. If B happens then the result is either a 4 or a 5 , and it is equally likely to be either. Therefore, the probability that A also happens is $1 / 2$, because A happens if the result is 4 . That is, $P(A \mid B)=1 / 2$. So, $P(A$ and $B)=2 / 6 \cdot 1 / 2=1 / 6$.

Of course there is an easier way to figure this out. A includes the outcomes $1,2,3$, and 4 . B includes the outcomes 4 and 5 . Only the outcome 4 is in both A and B. Therefore, $P(A$ and $B)=1 / 6$.

As an easier example, we find the probability of rolling three dice and getting 6 on all three. Since these events are independent, we find that

$$
\begin{aligned}
P(\text { die } 1=6 \text { and die } 2=6 \text { and die } 3=6) & =P(\operatorname{die} 1=6) P(\text { die } 2=6) P(\text { die } 3=6) \\
& =\frac{1}{6} \frac{1}{6} \frac{1}{6}=\frac{1}{216} \approx 0.0046=0.46 \%
\end{aligned}
$$

The probability of the intersection of several independent events is the product of the probabilities of the events.

5 Probability of Union of Events

Let A and B be two events. Their union, denoted by $A \cup B$ or A or B is the event consisting of outcomes which are in either A or B or both A and B. That is, A or B occurs when at least one of A or B occurs.
[picture]
The fraction of the sample space which is in A is $P(A)$. The fraction of the sample space which is in B is $P(B)$. If we add the probabilities of A and B, we count the probabilities of the events in both A and B twice. Therefore, $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$.

If A and B are mutually exclusive, then $P(A$ and $B)=0$, so this formula collapses to $P(A$ or $B)=P(A)+$ $P(B)$.
As an example, we find the probability of drawing a king or a spade. $P($ king $)=4 / 52$ and $P($ spade $)=13 / 52$. Since there is one card which is both king and spade, $P($ king and spade $)=1 / 52$. Therefore, $P($ king or spade $)=$ $4 / 52+13 / 52-1 / 52=16 / 52$.
As an easier example, we find the probability of drawing a king or a queen. This is easier because the two events are mutually exclusive. $P($ king $)=P($ queen $)=4 / 52$. Therefore, $P($ king or queen $)=4 / 52+4 / 52=$ 8/52.

6 Bayes's Theorem

In the baseball example from the last lecture, it is determined whether the pitcher will be left-handed before it is determined whether the batter will get a hit. Therefore, we typically think of the batter getting a hit depending on the pitcher being left-handed, and not vice versa. The chance that the batter gets a hit, given that the pitcher is left-handed is a prior probability. The chance that the pitcher was left-handed, given that the batter gets a hit is called a posterior probability.

Sometimes one conditional probability, $P(A \mid B)$, is known but the reverse conditional probability, $P(B \mid A)$ is desired. Typically the known probability is readily observable and thus a prior probability, and the unknown probability is posterior. The way to convert between the two is known as Bayes's Theorem:

$$
P(B \mid A)=\frac{P(B) P(A \mid B)}{P(A)}
$$

Notice that we also need to know the marginal probabilities of A and B. Bayes's Theorem can be easily derived by equating the two equations for $P(A$ and $B)$.
As an example, suppose that we have two buckets, numbered 1 and 2 , of balls. Some balls are yellow and some balls are green. Bucket 1 has 90% yellow balls and $10 \$$ green balls, and bucket 2 has 40% yellow balls and 60% green balls. These are the prior probabilities. We can find these just by looking in the buckets. We also know that bucket 2 has four times as many balls as bucket 1 . Suppose that the buckets are dumped out and a ball is chosen at random. If the ball is yellow, what is the probability that it came from bucket 1 ? This is a posterior probability.

We can first try to get an estimate. Notice that 90% of the balls in bucket 1 are yellow. Therefore, it might seem very likely that a yellow ball originated in bucket 1. However, even though only 40% of the balls in bucket 2 are yellow, there are many more balls in bucket 2 than there are in bucket 1 . So perhaps it is equally likely that a yellow ball originated in bucket 2 .
To solve this, we use Bayes's Theorem. We want to know P (bucket $1 \mid$ yellow $)$ and we know $P($ yellow \mid bucket 1$)=$ 0.9. The formula is

$$
P(\text { bucket } 1) \text { yellow }=\frac{P(\text { bucket } 1) P(\text { yellow } \mid \text { bucket } 1)}{P(\text { yellow })}
$$

All that remains is to find P (bucket 1) and P (yellow).
First we find P (bucket 1). At first we might think that $1 / 4$ of the balls are in bucket 1 . However, that means that $3 / 4$ of the balls are in bucket 2 . In this case, bucket 2 only has 3 times as many balls as bucket 1 does. So, instead, $1 / 5$ of the balls are in bucket 1 and $4 / 5$ of the balls are in bucket 2 . Then bucket 2 has 4 times as many balls as bucket 1 does, as desired. Therefore, $P($ bucket 1$)=1 / 5$.
Now all that remains is to find P (yellow). We are not told this directly. However, we can divide the yellow balls up into two disjoint categories - one which originated in bucket 1 and one which originated in bucket 2. Now we can compute

$$
P(\text { yellow and bucket } 1)=P(\text { bucket } 1) P(\text { yellow } \mid \text { bucket } 1)=\frac{1}{5} \cdot \frac{9}{10}=\frac{9}{50}=\frac{18}{100}
$$

and

$$
P(\text { yellow and bucket } 2)=P(\text { bucket } 2) P(\text { yellow } \mid \text { bucket } 2)=\frac{4}{5} \cdot \frac{4}{10}=\frac{16}{50}=\frac{32}{100} .
$$

Now we can write

$$
P(\text { yellow })=P(\text { yellow and bucket } 1)+P(\text { yellow and bucket } 2)=\frac{18}{100}+\frac{32}{100}=\frac{50}{100}=\frac{1}{2} .
$$

Putting everything together,

$$
P(\text { bucket } 1 \mid \text { yellow })=\frac{\frac{1}{5} \frac{9}{10}}{\frac{1}{2}}=\frac{\frac{9}{50}}{\frac{1}{2}}=\frac{18}{50}=36 \% .
$$

That is, the chance that a yellow ball originated in bucket 1 is 36%.

