
1 Dependent and Independent Events

Let A and B be events. We say that A is independent of B if P (A|B) = P (A). That is, the marginal
probability of A is the same as the conditional probability of A, given B. This means that the probability
of A occurring is not affected by B occurring. It turns out that, in this case, B is independent of A as well.
So, we just say that A and B are independent.

We say that A depends on B if P (A|B) 6= P (A). That is, the marginal probability of A is not the same
as the conditional probability of A, given B. This means that the probability of A occurring is affected by
B occurring. It turns out that, in this case, B depends on A as well. So, we just say that A and B are
dependent.

Consider these events from the card draw: A = drawing a king, B = drawing a spade, C = drawing a face
card.

Events A and B are independent. If you know that you have drawn a spade, this does not change the
likelihood that you have actually drawn a king. Formally, the marginal probability of drawing a king is
P (A) = 4/52. The conditional probability that your card is a king, given that it a spade, is P (A|B) = 1/13,
which is the same as 4/52.

Events A and C are dependent. If you know that you have drawn a face card, it is much more likely that
you have actually drawn a king than it would be ordinarily. Formally, the marginal probability of drawing
a king is P (A) = 4/52. The conditional probability that your card is a king, given that it is a face card, is
P (A|C) = 4/12, which is much larger than 4/52.

Recall the events of facing a left-handed pitcher and getting a hit from the last lecture. These events are
dependent because, if the pitcher is left-handed, the chances of getting a hit are different (in fact, higher) than
they would be ordinarily. Formally, P (getting a hit) = 0.3 but P (getting a hit|pitcher is left-handed) = 0.5.

2 Complementary Events

Recall that an event is a subset of the sample space. The complement of an event is another event, consisting
of the remaining elements of the sample space. If A is an event, we let Ac denote the complementary event.
The probability of an event and the probability of its complement are related by P (Ac) = 1− P (A).
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For example, from the die roll, consider the event of rolling at least a 5. This has probability 2/5. The
complementary event is rolling less than a 5. This has probability 1− 2/5 = 3/5.

3 Mutually Exclusive Events

Events A and B are said to be mutually exclusive if they have no outcomes in common. Equivalently, A and
B can not happen at the same time.

For example, from the die roll, consider the two events of rolling a 3 and rolling a 6. These are mutually
exclusive because you can not roll a 3 and a 6 at the same time.

Complementary events are mutually exclusive. However, mutually exclusive events need not be complemen-
tary.

4 Probability of Intersection of Events

Let A and B be two events. Their intersection, denoted by A ∩ B or A and B is the event consisting
of outcomes which are common to both A and B. That is, A and B occurs when both A and B occur
simultaneously.
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The fraction of the sample space which is in A is P (A). The fraction of A which is also in B is P (B|A),
the conditional probability that B occurs, given that A occurs. Therefore, the fraction of the sample space
which is in both A and B is P (A)P (B|A).

We could arrive at another result by interchanging the roles of A and B. The fraction of the sample space
which is in B is P (B). The fraction of B which is also in A is P (A|B), the conditional probability that
A occurs, given that B occurs. Therefore, the fraction of the sample space which is in both B and A is
P (B)P (A|B).

Evidently, we have two equivalent formulas for the probability of the intersection of A and B, P (A and B) =
P (A)P (B|A) and P (A and B) = P (B)P (A|B). Sometimes P (A|B) is known but P (B|A) is not. Use
whichever one is known.

If A and B are independent, then P (B|A) = P (B) and P (A|B) = P (A), so these formulas both collapse to
P (A and B) = P (A)P (B).

As an example, consider a single die roll and the two events A = rolling a 4 or less and B = rolling a 4 or
a 5. Since B consists of 2 outcomes, P (B) = 2/6. If B happens then the result is either a 4 or a 5, and it is
equally likely to be either. Therefore, the probability that A also happens is 1/2, because A happens if the
result is 4. That is, P (A|B) = 1/2. So, P (A and B) = 2/6 · 1/2 = 1/6.

Of course there is an easier way to figure this out. A includes the outcomes 1, 2, 3, and 4. B includes the
outcomes 4 and 5. Only the outcome 4 is in both A and B. Therefore, P (A and B) = 1/6.

As an easier example, we find the probability of rolling three dice and getting 6 on all three. Since these
events are independent, we find that

P (die 1 = 6 and die 2 = 6 and die 3 = 6) = P (die 1 = 6)P (die 2 = 6)P (die 3 = 6)

=
1

6

1

6

1

6
=

1

216
≈ 0.0046 = 0.46%.

The probability of the intersection of several independent events is the product of the probabilities of the
events.

5 Probability of Union of Events

Let A and B be two events. Their union, denoted by A ∪ B or A or B is the event consisting of outcomes
which are in either A or B or both A and B. That is, A or B occurs when at least one of A or B occurs.
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The fraction of the sample space which is in A is P (A). The fraction of the sample space which is in B is
P (B). If we add the probabilities of A and B, we count the probabilities of the events in both A and B
twice. Therefore, P (A or B) = P (A) + P (B)− P (A and B).

If A and B are mutually exclusive, then P (A and B) = 0, so this formula collapses to P (A or B) = P (A) +
P (B).

As an example, we find the probability of drawing a king or a spade. P (king) = 4/52 and P (spade) = 13/52.
Since there is one card which is both king and spade, P (king and spade) = 1/52. Therefore, P (king or spade) =
4/52 + 13/52− 1/52 = 16/52.

As an easier example, we find the probability of drawing a king or a queen. This is easier because the two
events are mutually exclusive. P (king) = P (queen) = 4/52. Therefore, P (king or queen) = 4/52 + 4/52 =
8/52.
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6 Bayes’s Theorem

In the baseball example from the last lecture, it is determined whether the pitcher will be left-handed before
it is determined whether the batter will get a hit. Therefore, we typically think of the batter getting a hit
depending on the pitcher being left-handed, and not vice versa. The chance that the batter gets a hit, given
that the pitcher is left-handed is a prior probability. The chance that the pitcher was left-handed, given that
the batter gets a hit is called a posterior probability.

Sometimes one conditional probability, P (A|B), is known but the reverse conditional probability, P (B|A) is
desired. Typically the known probability is readily observable and thus a prior probability, and the unknown
probability is posterior. The way to convert between the two is known as Bayes’s Theorem:

P (B|A) =
P (B)P (A|B)

P (A)
.

Notice that we also need to know the marginal probabilities of A and B. Bayes’s Theorem can be easily
derived by equating the two equations for P (A and B).

As an example, suppose that we have two buckets, numbered 1 and 2, of balls. Some balls are yellow and
some balls are green. Bucket 1 has 90% yellow balls and 10$ green balls, and bucket 2 has 40% yellow balls
and 60% green balls. These are the prior probabilities. We can find these just by looking in the buckets. We
also know that bucket 2 has four times as many balls as bucket 1. Suppose that the buckets are dumped
out and a ball is chosen at random. If the ball is yellow, what is the probability that it came from bucket 1?
This is a posterior probability.

We can first try to get an estimate. Notice that 90% of the balls in bucket 1 are yellow. Therefore, it might
seem very likely that a yellow ball originated in bucket 1. However, even though only 40% of the balls in
bucket 2 are yellow, there are many more balls in bucket 2 than there are in bucket 1. So perhaps it is equally
likely that a yellow ball originated in bucket 2.

To solve this, we use Bayes’s Theorem. We want to know P (bucket 1|yellow) and we know P (yellow|bucket 1) =
0.9. The formula is

P (bucket 1)yellow =
P (bucket 1)P (yellow|bucket 1)

P (yellow)
.

All that remains is to find P (bucket 1) and P (yellow).

First we find P (bucket 1). At first we might think that 1/4 of the balls are in bucket 1. However, that means
that 3/4 of the balls are in bucket 2. In this case, bucket 2 only has 3 times as many balls as bucket 1 does.
So, instead, 1/5 of the balls are in bucket 1 and 4/5 of the balls are in bucket 2. Then bucket 2 has 4 times
as many balls as bucket 1 does, as desired. Therefore, P (bucket 1) = 1/5.

Now all that remains is to find P (yellow). We are not told this directly. However, we can divide the yellow
balls up into two disjoint categories - one which originated in bucket 1 and one which originated in bucket
2. Now we can compute

P (yellow and bucket 1) = P (bucket 1)P (yellow|bucket 1) =
1

5
· 9

10
=

9

50
=

18

100

and

P (yellow and bucket 2) = P (bucket 2)P (yellow|bucket 2) =
4

5
· 4

10
=

16

50
=

32

100
.

Now we can write

P (yellow) = P (yellow and bucket 1) + P (yellow and bucket 2) =
18

100
+

32

100
=

50

100
=

1

2
.

Putting everything together,

P (bucket 1|yellow) =
1
5

9
10
1
2

=
9
50
1
2

=
18

50
= 36%.

That is, the chance that a yellow ball originated in bucket 1 is 36%.
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